-
Previous Article
Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors
- JIMO Home
- This Issue
-
Next Article
On EOQ cost models with arbitrary purchase and transportation costs
Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs
1. | School of Statistics, Qufu Normal University, Shandong 273165, China |
2. | Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China |
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,, Dover Publications, (1992).
|
[2] |
S. Asmussen, F. Avram and M. R. Pistorius, Russian and American put options under exponential phase-type Lévy models,, Stochastic Processes and their Applications, 109 (2004), 79.
doi: 10.1016/j.spa.2003.07.005. |
[3] |
B. Avanzi, Strategies for dividend distribution: A review,, North American Actuarial Journal, 13 (2009), 217.
doi: 10.1080/10920277.2009.10597549. |
[4] |
B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency,, Insurance: Mathematics and Economics, 52 (2013), 98.
doi: 10.1016/j.insmatheco.2012.10.008. |
[5] |
B. Avanzi and H. U. Gerber, Optimal dividends in the dual model with diffusion,, ASTIN Bulletin, 38 (2008), 653.
doi: 10.2143/AST.38.2.2033357. |
[6] |
B. Avanzi, H. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model,, Insurance: Mathematics and Economics, 41 (2007), 111.
doi: 10.1016/j.insmatheco.2006.10.002. |
[7] |
B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.
doi: 10.2139/ssrn.1709174. |
[8] |
B. Avanzi, V. Tu and B. Wong, On optimal periodic dividend strategies in the dual model with diffusion,, Insurance: Mathematics and Economics, 55 (2014), 210.
doi: 10.1016/j.insmatheco.2014.01.005. |
[9] |
P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model,, Mathematical Finance, 15 (2005), 261.
doi: 10.1111/j.0960-1627.2005.00220.x. |
[10] |
E. Bayraktar and M. Egami, Optimizing venture capital investments in a jump diffusion model,, Mathematical Methods of Operations Research, 67 (2008), 21.
doi: 10.1007/s00186-007-0181-x. |
[11] |
E. Bayraktar, A. E. Kyprianou and K. Yamazaki, On optimal dividends in the dual model,, ASTIN Bulletin, 43 (2013), 359.
doi: 10.1017/asb.2013.17. |
[12] |
E. Bayraktar, A. E. Kyprianou and K. Yamazaki, Optimal dividends in the dual model under transaction costs,, Insurance: Mathematics and Economics, 54 (2014), 133.
doi: 10.1016/j.insmatheco.2013.11.007. |
[13] |
E. C. K. Cheung and S. Drekic, Dividend moments in the dual model: Exact and approximate approaches,, ASTIN Bulletin, 38 (2008), 399.
doi: 10.2143/AST.38.2.2033347. |
[14] |
H. Dai, Z. Liu and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.
doi: 10.1007/s00186-010-0312-7. |
[15] |
H. Dai, Z. Liu and N. Luan, Optimal financing and dividend control in the dual model,, Mathematical and Computer Modelling, 53 (2011), 1921.
doi: 10.1016/j.mcm.2011.01.019. |
[16] |
B. De Finetti, Su un'impostazion alternativa dell teoria collecttiva del rischio,, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433. Google Scholar |
[17] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Applications of Mathematics, (1993).
|
[18] |
L. He and Z. Liang, Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs,, Insurance: Mathematics and Economics, 44 (2009), 88.
doi: 10.1016/j.insmatheco.2008.10.001. |
[19] |
S. Jaschke, A note on the inhomogeneous linear stochastic differential equation,, Insurance: Mathematics and Economics, 32 (2003), 461.
doi: 10.1016/S0167-6687(03)00134-3. |
[20] |
N. Kulenko and H. Schmidli, Optimal dividend strategies in a Cramér-Lundberg model with capital injections,, Insurance: Mathematics and Economics, 43 (2008), 270.
doi: 10.1016/j.insmatheco.2008.05.013. |
[21] |
K. Miyasawa, An economic survival game,, Journal of the Operations Research Society of Japan, 4 (1962), 95. Google Scholar |
[22] |
H. Schmidli, Stochastic Control in Insurance,, Springer, (2008).
|
[23] |
D. J. Yao, H. L. Yang and R. M. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.
doi: 10.3934/jimo.2010.6.761. |
[24] |
D. J. Yao, H. L. Yang and R. W. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.
doi: 10.1016/j.ejor.2011.01.015. |
[25] |
D. J. Yao, R. W. Wang and L. Xu, Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model,, Journal of Industrial and Management Optimization, 10 (2014), 1235.
doi: 10.3934/jimo.2014.10.1235. |
[26] |
C. C. Yin and Y. Z. Wen, Optimal dividends problem with a terminal value for spectrally positive Lévy processes,, Insurance: Mathematics and Economics, 53 (2013), 769.
doi: 10.1016/j.insmatheco.2013.09.019. |
[27] |
C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments,, Insurance: Mathematics and Economics, 52 (2013), 469.
doi: 10.1016/j.insmatheco.2013.02.014. |
[28] |
C. C. Yin, Y. Z. Wen and Y. X. Zhao, On the optimal dividend problem for a spectrally positive Lévy process,, ASTIN Bulletin, 44 (2014), 635.
doi: 10.1017/asb.2014.12. |
[29] |
Z. M. Zhang, On a risk model with randomized dividend-decision times,, Journal of Industrial and Management Optimization, 10 (2014), 1041.
doi: 10.3934/jimo.2014.10.1041. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,, Dover Publications, (1992).
|
[2] |
S. Asmussen, F. Avram and M. R. Pistorius, Russian and American put options under exponential phase-type Lévy models,, Stochastic Processes and their Applications, 109 (2004), 79.
doi: 10.1016/j.spa.2003.07.005. |
[3] |
B. Avanzi, Strategies for dividend distribution: A review,, North American Actuarial Journal, 13 (2009), 217.
doi: 10.1080/10920277.2009.10597549. |
[4] |
B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency,, Insurance: Mathematics and Economics, 52 (2013), 98.
doi: 10.1016/j.insmatheco.2012.10.008. |
[5] |
B. Avanzi and H. U. Gerber, Optimal dividends in the dual model with diffusion,, ASTIN Bulletin, 38 (2008), 653.
doi: 10.2143/AST.38.2.2033357. |
[6] |
B. Avanzi, H. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model,, Insurance: Mathematics and Economics, 41 (2007), 111.
doi: 10.1016/j.insmatheco.2006.10.002. |
[7] |
B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.
doi: 10.2139/ssrn.1709174. |
[8] |
B. Avanzi, V. Tu and B. Wong, On optimal periodic dividend strategies in the dual model with diffusion,, Insurance: Mathematics and Economics, 55 (2014), 210.
doi: 10.1016/j.insmatheco.2014.01.005. |
[9] |
P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model,, Mathematical Finance, 15 (2005), 261.
doi: 10.1111/j.0960-1627.2005.00220.x. |
[10] |
E. Bayraktar and M. Egami, Optimizing venture capital investments in a jump diffusion model,, Mathematical Methods of Operations Research, 67 (2008), 21.
doi: 10.1007/s00186-007-0181-x. |
[11] |
E. Bayraktar, A. E. Kyprianou and K. Yamazaki, On optimal dividends in the dual model,, ASTIN Bulletin, 43 (2013), 359.
doi: 10.1017/asb.2013.17. |
[12] |
E. Bayraktar, A. E. Kyprianou and K. Yamazaki, Optimal dividends in the dual model under transaction costs,, Insurance: Mathematics and Economics, 54 (2014), 133.
doi: 10.1016/j.insmatheco.2013.11.007. |
[13] |
E. C. K. Cheung and S. Drekic, Dividend moments in the dual model: Exact and approximate approaches,, ASTIN Bulletin, 38 (2008), 399.
doi: 10.2143/AST.38.2.2033347. |
[14] |
H. Dai, Z. Liu and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.
doi: 10.1007/s00186-010-0312-7. |
[15] |
H. Dai, Z. Liu and N. Luan, Optimal financing and dividend control in the dual model,, Mathematical and Computer Modelling, 53 (2011), 1921.
doi: 10.1016/j.mcm.2011.01.019. |
[16] |
B. De Finetti, Su un'impostazion alternativa dell teoria collecttiva del rischio,, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433. Google Scholar |
[17] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Applications of Mathematics, (1993).
|
[18] |
L. He and Z. Liang, Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs,, Insurance: Mathematics and Economics, 44 (2009), 88.
doi: 10.1016/j.insmatheco.2008.10.001. |
[19] |
S. Jaschke, A note on the inhomogeneous linear stochastic differential equation,, Insurance: Mathematics and Economics, 32 (2003), 461.
doi: 10.1016/S0167-6687(03)00134-3. |
[20] |
N. Kulenko and H. Schmidli, Optimal dividend strategies in a Cramér-Lundberg model with capital injections,, Insurance: Mathematics and Economics, 43 (2008), 270.
doi: 10.1016/j.insmatheco.2008.05.013. |
[21] |
K. Miyasawa, An economic survival game,, Journal of the Operations Research Society of Japan, 4 (1962), 95. Google Scholar |
[22] |
H. Schmidli, Stochastic Control in Insurance,, Springer, (2008).
|
[23] |
D. J. Yao, H. L. Yang and R. M. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.
doi: 10.3934/jimo.2010.6.761. |
[24] |
D. J. Yao, H. L. Yang and R. W. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.
doi: 10.1016/j.ejor.2011.01.015. |
[25] |
D. J. Yao, R. W. Wang and L. Xu, Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model,, Journal of Industrial and Management Optimization, 10 (2014), 1235.
doi: 10.3934/jimo.2014.10.1235. |
[26] |
C. C. Yin and Y. Z. Wen, Optimal dividends problem with a terminal value for spectrally positive Lévy processes,, Insurance: Mathematics and Economics, 53 (2013), 769.
doi: 10.1016/j.insmatheco.2013.09.019. |
[27] |
C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments,, Insurance: Mathematics and Economics, 52 (2013), 469.
doi: 10.1016/j.insmatheco.2013.02.014. |
[28] |
C. C. Yin, Y. Z. Wen and Y. X. Zhao, On the optimal dividend problem for a spectrally positive Lévy process,, ASTIN Bulletin, 44 (2014), 635.
doi: 10.1017/asb.2014.12. |
[29] |
Z. M. Zhang, On a risk model with randomized dividend-decision times,, Journal of Industrial and Management Optimization, 10 (2014), 1041.
doi: 10.3934/jimo.2014.10.1041. |
[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[4] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[5] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[6] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[7] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[8] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[9] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[10] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[11] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[12] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[13] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[14] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[15] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[16] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[17] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[18] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[19] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[20] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]