-
Previous Article
Portfolio optimization using a new probabilistic risk measure
- JIMO Home
- This Issue
-
Next Article
Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs
Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors
1. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China, China |
References:
[1] |
K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors,, Commu. Math. Sci., 6 (2008), 507.
doi: 10.4310/CMS.2008.v6.n2.a12. |
[2] |
Z. Chen and L. Qi, Circulant tensors with applications to spectral hypergraph theory and stochastic process,, preprint, (2014). Google Scholar |
[3] |
W. Ding, L. Qi and Y. Wei, M-Tensors and nonsingular M-tensors,, Lin. Alg. Appl., 439 (2013), 3264.
doi: 10.1016/j.laa.2013.08.038. |
[4] |
W. Ding, L. Qi and Y. Wei, Fast Hankel tensor-vector products and application to exponential data fitting,, Numer. Lin. Alg. Appl., (2015).
doi: 10.1002/nla.1970. |
[5] |
M. Fiedler, Notes on Hilbert and Cauchy matrices,, Lin. Alg. Appl., 432 (2010), 351.
doi: 10.1016/j.laa.2009.08.014. |
[6] |
T. Finck, G. Heinig and K. Rost, An inversion formula and fast algorithms for Cauchy-Vandermonde matrices,, Lin. Alg. Appl., 183 (1993), 179.
doi: 10.1016/0024-3795(93)90431-M. |
[7] |
I. Gohberg and V. Olshevsky, Fast algorithms with preprocessing for matrix-vector multiplication problems,, J. Complexity, 10 (1994), 411.
doi: 10.1006/jcom.1994.1021. |
[8] |
J. He and T. Z. Huang, Inequalities for M-tensors,, Journal of Inequality and Applications, 2014 (2014).
doi: 10.1186/1029-242X-2014-114. |
[9] |
G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices,, Linear Algebra for Signal Processing, (1995), 63.
doi: 10.1007/978-1-4612-4228-4_5. |
[10] |
G. Pólya and G. Szegö, Zweiter Band,, Springer, (1925). Google Scholar |
[11] |
L. Qi, Eigenvalue of a real supersymmetric tensor,, J. Symb. Comput., 40 (2005), 1302.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi, $H^+$-eigenvalues of Laplacian and signless Laplacian tensors,, Communications in Mathematical Sciences, 12 (2014), 1045.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[13] |
L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition,, Communications in Mathematical Sciences, 13 (2015), 113.
doi: 10.4310/CMS.2015.v13.n1.a6. |
[14] |
L. Qi and Y. Song, An even order symmetric B tensor is positive definite,, Lin. Alg. Appl., 457 (2014), 303.
doi: 10.1016/j.laa.2014.05.026. |
[15] |
L. Qi, C. Xu and Y. Xu, Nonnegative tensor factorization, completely positive tensors and an hierarchical elimination algorithm,, SIAM J. Matrix Anal. Appl., 35 (2014), 1227.
doi: 10.1137/13092232X. |
[16] |
S. Solak and D. Bozkruk, On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices,, Appl. Math. Comput., 140 (2003), 231.
doi: 10.1016/S0096-3003(02)00205-9. |
[17] |
Y. Song and L. Qi, Some properties of infinite and finite dimension Hilbert tensors,, Lin. Alg. Appl., 451 (2014), 1. Google Scholar |
[18] |
Y. Song and L. Qi, Properties of some classes of structured tensors,, J. Optim. Theory Appl., (2015), 10957.
doi: 10.1007/s10957-014-0616-5. |
[19] |
E. E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,, Lin. Alg. Appl., 149 (1991), 1.
doi: 10.1016/0024-3795(91)90321-M. |
[20] |
E. E. Tyrtyshnikov, Singular values of Cauchy-Toeplitz matrices,, Lin. Alg. Appl., 161 (1992), 99.
doi: 10.1016/0024-3795(92)90007-W. |
[21] |
P. Yuan and L. You, Some remarks on P, P$_0$, B and B$_0$ tensors,, Lin. Alg. Appl., 459 (2014), 511. Google Scholar |
[22] |
L. Zhang, L. Qi and G. Zhou, M-tensors and some applications,, SIAM J. Matrix Anal. Appl., 35 (2014), 437.
doi: 10.1137/130915339. |
show all references
References:
[1] |
K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors,, Commu. Math. Sci., 6 (2008), 507.
doi: 10.4310/CMS.2008.v6.n2.a12. |
[2] |
Z. Chen and L. Qi, Circulant tensors with applications to spectral hypergraph theory and stochastic process,, preprint, (2014). Google Scholar |
[3] |
W. Ding, L. Qi and Y. Wei, M-Tensors and nonsingular M-tensors,, Lin. Alg. Appl., 439 (2013), 3264.
doi: 10.1016/j.laa.2013.08.038. |
[4] |
W. Ding, L. Qi and Y. Wei, Fast Hankel tensor-vector products and application to exponential data fitting,, Numer. Lin. Alg. Appl., (2015).
doi: 10.1002/nla.1970. |
[5] |
M. Fiedler, Notes on Hilbert and Cauchy matrices,, Lin. Alg. Appl., 432 (2010), 351.
doi: 10.1016/j.laa.2009.08.014. |
[6] |
T. Finck, G. Heinig and K. Rost, An inversion formula and fast algorithms for Cauchy-Vandermonde matrices,, Lin. Alg. Appl., 183 (1993), 179.
doi: 10.1016/0024-3795(93)90431-M. |
[7] |
I. Gohberg and V. Olshevsky, Fast algorithms with preprocessing for matrix-vector multiplication problems,, J. Complexity, 10 (1994), 411.
doi: 10.1006/jcom.1994.1021. |
[8] |
J. He and T. Z. Huang, Inequalities for M-tensors,, Journal of Inequality and Applications, 2014 (2014).
doi: 10.1186/1029-242X-2014-114. |
[9] |
G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices,, Linear Algebra for Signal Processing, (1995), 63.
doi: 10.1007/978-1-4612-4228-4_5. |
[10] |
G. Pólya and G. Szegö, Zweiter Band,, Springer, (1925). Google Scholar |
[11] |
L. Qi, Eigenvalue of a real supersymmetric tensor,, J. Symb. Comput., 40 (2005), 1302.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi, $H^+$-eigenvalues of Laplacian and signless Laplacian tensors,, Communications in Mathematical Sciences, 12 (2014), 1045.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[13] |
L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition,, Communications in Mathematical Sciences, 13 (2015), 113.
doi: 10.4310/CMS.2015.v13.n1.a6. |
[14] |
L. Qi and Y. Song, An even order symmetric B tensor is positive definite,, Lin. Alg. Appl., 457 (2014), 303.
doi: 10.1016/j.laa.2014.05.026. |
[15] |
L. Qi, C. Xu and Y. Xu, Nonnegative tensor factorization, completely positive tensors and an hierarchical elimination algorithm,, SIAM J. Matrix Anal. Appl., 35 (2014), 1227.
doi: 10.1137/13092232X. |
[16] |
S. Solak and D. Bozkruk, On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices,, Appl. Math. Comput., 140 (2003), 231.
doi: 10.1016/S0096-3003(02)00205-9. |
[17] |
Y. Song and L. Qi, Some properties of infinite and finite dimension Hilbert tensors,, Lin. Alg. Appl., 451 (2014), 1. Google Scholar |
[18] |
Y. Song and L. Qi, Properties of some classes of structured tensors,, J. Optim. Theory Appl., (2015), 10957.
doi: 10.1007/s10957-014-0616-5. |
[19] |
E. E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,, Lin. Alg. Appl., 149 (1991), 1.
doi: 10.1016/0024-3795(91)90321-M. |
[20] |
E. E. Tyrtyshnikov, Singular values of Cauchy-Toeplitz matrices,, Lin. Alg. Appl., 161 (1992), 99.
doi: 10.1016/0024-3795(92)90007-W. |
[21] |
P. Yuan and L. You, Some remarks on P, P$_0$, B and B$_0$ tensors,, Lin. Alg. Appl., 459 (2014), 511. Google Scholar |
[22] |
L. Zhang, L. Qi and G. Zhou, M-tensors and some applications,, SIAM J. Matrix Anal. Appl., 35 (2014), 437.
doi: 10.1137/130915339. |
[1] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[2] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[3] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[4] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[5] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[6] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[7] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[8] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[9] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[10] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[11] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]