-
Previous Article
A multidimensional information model for managing construction information
- JIMO Home
- This Issue
-
Next Article
Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors
Portfolio optimization using a new probabilistic risk measure
1. | Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, WA 6102, Australia, Australia, Australia, Australia |
References:
[1] |
P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.
doi: 10.1111/1467-9965.00068. |
[2] |
X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule,, Management Science, 46 (2000), 957.
doi: 10.1287/mnsc.46.7.957.12039. |
[3] |
X. T. Cui, S. S. Zhu, X. L. Sun and D. Li, Nonlinear portfolio selection using approximate parametric Value-at-Risk,, Journal of Banking & Finance, 37 (2013), 2124.
doi: 10.1016/j.jbankfin.2013.01.036. |
[4] |
X. T. Deng, Z. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium,, European Journal of Operational Research, 166 (2005), 278.
doi: 10.1016/j.ejor.2004.01.040. |
[5] |
H. Konno, Piecewise linear risk function and portfolio optimization,, Journal of the Operations Research Society of Japan, 33 (1990), 139.
|
[6] |
H. Konno and K. Suzuki, A mean-variance-skewness optimization model,, Journal of the Operations Research Society of Japan, 38 (1995), 137. Google Scholar |
[7] |
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market,, Management Science, 37 (1991), 519.
doi: 10.1287/mnsc.37.5.519. |
[8] |
X. Li and Z. Y. Wu, Dynamic downside risk measure and optimal asset allocation,, Presented at FMA., (). Google Scholar |
[9] |
P. C. Lin, Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm,, Journal Of Industrial And Management Optimization, 8 (2012), 549.
doi: 10.3934/jimo.2012.8.549. |
[10] |
H. Markowitz, Portfolio Selection,, The Journal of Finance, 7 (1952), 77. Google Scholar |
[11] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investment,, John Wiley & Sons, (1959).
|
[12] |
G. G. Polak, D. F. Rogers and D. J. Sweeney, Risk management strategies via minimax portfolio optimization,, European Journal of Operational Research, 207 (2010), 409.
doi: 10.1016/j.ejor.2010.04.025. |
[13] |
K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function,, Annals of Operations Research, 101 (2001), 333.
doi: 10.1023/A:1010909632198. |
[14] |
T. L. Vincent and W. J. Grantham, Optimality in Parametric Systems,, John Wiley & Sons, (1981).
|
[15] |
H. X. Yao, Z. F. Li and Y. Z. Lai, Mean-CVaR portfolio selection: A nonparametric estimation framework,, Computers and Operations Research, 40 (2013), 1014.
doi: 10.1016/j.cor.2012.11.007. |
show all references
References:
[1] |
P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.
doi: 10.1111/1467-9965.00068. |
[2] |
X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule,, Management Science, 46 (2000), 957.
doi: 10.1287/mnsc.46.7.957.12039. |
[3] |
X. T. Cui, S. S. Zhu, X. L. Sun and D. Li, Nonlinear portfolio selection using approximate parametric Value-at-Risk,, Journal of Banking & Finance, 37 (2013), 2124.
doi: 10.1016/j.jbankfin.2013.01.036. |
[4] |
X. T. Deng, Z. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium,, European Journal of Operational Research, 166 (2005), 278.
doi: 10.1016/j.ejor.2004.01.040. |
[5] |
H. Konno, Piecewise linear risk function and portfolio optimization,, Journal of the Operations Research Society of Japan, 33 (1990), 139.
|
[6] |
H. Konno and K. Suzuki, A mean-variance-skewness optimization model,, Journal of the Operations Research Society of Japan, 38 (1995), 137. Google Scholar |
[7] |
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market,, Management Science, 37 (1991), 519.
doi: 10.1287/mnsc.37.5.519. |
[8] |
X. Li and Z. Y. Wu, Dynamic downside risk measure and optimal asset allocation,, Presented at FMA., (). Google Scholar |
[9] |
P. C. Lin, Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm,, Journal Of Industrial And Management Optimization, 8 (2012), 549.
doi: 10.3934/jimo.2012.8.549. |
[10] |
H. Markowitz, Portfolio Selection,, The Journal of Finance, 7 (1952), 77. Google Scholar |
[11] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investment,, John Wiley & Sons, (1959).
|
[12] |
G. G. Polak, D. F. Rogers and D. J. Sweeney, Risk management strategies via minimax portfolio optimization,, European Journal of Operational Research, 207 (2010), 409.
doi: 10.1016/j.ejor.2010.04.025. |
[13] |
K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function,, Annals of Operations Research, 101 (2001), 333.
doi: 10.1023/A:1010909632198. |
[14] |
T. L. Vincent and W. J. Grantham, Optimality in Parametric Systems,, John Wiley & Sons, (1981).
|
[15] |
H. X. Yao, Z. F. Li and Y. Z. Lai, Mean-CVaR portfolio selection: A nonparametric estimation framework,, Computers and Operations Research, 40 (2013), 1014.
doi: 10.1016/j.cor.2012.11.007. |
[1] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[2] |
Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983 |
[3] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]