• Previous Article
    Optimal acquisition, inventory and production decisions for a closed-loop manufacturing system with legislation constraint
  • JIMO Home
  • This Issue
  • Next Article
    Construction schedule optimization for high arch dams based on real-time interactive simulation
October  2015, 11(4): 1343-1354. doi: 10.3934/jimo.2015.11.1343

Optimal tracking control for networked control systems with random time delays and packet dropouts

1. 

School of Computer Science, Xi'an Shiyou University, Xi'an, 710065, China

2. 

Department of Automation, Northwestern Polytechnical University, Xi'an, 710072, China, China

Received  October 2012 Revised  February 2015 Published  March 2015

This paper studies the problem of optimal output tracking control for networked control system with uncertain time delays and packet dropouts. Active time-varying sampling period strategy is proposed to ensure the random variable time delays always shorter than one sampling period. Hybrid driven modes are adopted by sensor to solve the issues of long time delay and packet dropout. By using augmentation approach, the tracking problem of this formulated within-one-step delayed discrete-time system is transformed into a general problem of non-delayed state linear quadratic regulator. A “gridding” approach is introduced to guarantee the realization of optimal output feedback control law by the solution of a series of Riccati matrix equations from an offline database that is constructed by different combination of time delays and packet dropouts. Simulation results demonstrate the effectiveness of the optimal tracking control law.
Citation: Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343
References:
[1]

N. Duan and X. J. Xie, Further results on output-feedback stabilization for a class of stochastic nonlinear systems,, IEEE Transactions on Automatic Control, 56 (2011), 1208.  doi: 10.1109/TAC.2011.2107112.  Google Scholar

[2]

D. M. Dawson, et al., Tracking control of rigid-link electrically-driven robot manipulators,, International Journal of Control, 56 (1992), 991.  doi: 10.1080/00207179208934354.  Google Scholar

[3]

H. J. Gao and T. W. Chen, Network-based $H_\infty $ output tracking control,, IEEE Transactions on Automatic Control, 53 (2008), 655.  doi: 10.1109/TAC.2008.919850.  Google Scholar

[4]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[5]

S. Y. Han, et al., Near-Optimal Tracking Control for Discrete-time Systems with Delayed Input,, International Journal of Control Automation and Systems, 8 (2010), 1330.  doi: 10.1007/s12555-010-0619-4.  Google Scholar

[6]

C. J. Hou, Y. P. Chen and Z. L. Lu, Superconvergence property of finite element methods for parabolic optimal control problems,, Journal of Industrial and Management Optimization, 7 (2011), 927.  doi: 10.3934/jimo.2011.7.927.  Google Scholar

[7]

K. Ji and W. J. Kim, Stabilization of networked control system with time delays and data-packet losses,, European Journal of Control, 13 (2007), 343.  doi: 10.3166/ejc.13.343-350.  Google Scholar

[8]

B. Jayawardhana and G. Weiss, Tracking and disturbance rejection for fully actuated mechanical systems,, Automatica, 44 (2008), 2863.  doi: 10.1016/j.automatica.2008.03.030.  Google Scholar

[9]

S. Liu, L. Xie and H. S. Zhang, Linear quadratic tracking problem for discrete-time systems with multiple delays in single input channel,, International Journal of Robust and Nonlinear Control, 20 (2010), 1379.  doi: 10.1002/rnc.1520.  Google Scholar

[10]

M. Mauder, Robust tracking control of nonholonomic dynamic systems with application to the bi-steerable mobile robot,, Automatica, 44 (2008), 2588.  doi: 10.1016/j.automatica.2008.02.012.  Google Scholar

[11]

A. Naskali and A. Onat, Random network delay in model based predictive networked control systems,, in Proc. $6^{nd}$ WSEAS Int. Conf. Appl. Comput. Sci., 1 (2006), 199.   Google Scholar

[12]

A. Onat, et al., Control over imperfect networks: Model-based predictive networked control systems,, IEEE Transactions on Industrial Electronics, 58 (2011), 905.  doi: 10.1109/TIE.2010.2051932.  Google Scholar

[13]

A. Onat and E. Parlakay, Implementation of networked predictive control system,, in Proc. 9th Real-Time Linux Workshop, 1 (2007), 85.   Google Scholar

[14]

T. Suzuki, et al., Controllability and stabilizability of a networked control system with periodic communication constraints,, Systems & Control Letters, 60 (2011), 977.  doi: 10.1016/j.sysconle.2011.08.004.  Google Scholar

[15]

Y. Shi and B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains,, IEEE Transactions on Automatic Control, 54 (2009), 1668.  doi: 10.1109/TAC.2009.2020638.  Google Scholar

[16]

A. Sala, Computer control under time-varying sampling period: An LMI gridding approach,, Automatica, 41 (2005), 2077.  doi: 10.1016/j.automatica.2005.05.017.  Google Scholar

[17]

B. O. S. Teixeira, et al., Spacecraft tracking using sampled-data Kalman filters - An illustrative application of extended and unscented estimators,, IEEE Control Systems Magazine, 28 (2008), 78.  doi: 10.1109/MCS.2008.923231.  Google Scholar

[18]

Y. H. Wang, Z. M. Wang and Y. F. Zheng, On the model-based networked control for singularly perturbed systems,, International Journal of Robust and Nonlinear Control, 6 (2008), 153.  doi: 10.1007/s11768-008-6152-9.  Google Scholar

[19]

J. Wu and T. W. Chen, Design of networked control systems with packet dropouts,, IEEE Transactions on Automatic Control, 52 (2007), 1314.  doi: 10.1109/TAC.2007.900839.  Google Scholar

[20]

H. H. Wang, Optimal tracking for Discrete-Time Systems with Input Delays,, Proceedings of the 2008 Chinese Control and Decision Conference, (2008), 4033.   Google Scholar

[21]

Y. L. Wang and G. H. Yang, Output tracking control for networked control systems with time delay and packet dropout,, International Journal of Control, 81 (2008), 1709.  doi: 10.1080/00207170701836944.  Google Scholar

[22]

Y. Wang and G. Yang, Output tracking control for discrete-time networked control systems,, IEEE American Control Conference, (2009), 5109.  doi: 10.1109/ACC.2009.5159974.  Google Scholar

[23]

D. Wu, J. Wu and S. Chen, Robust $H_\infty $ control for networked control systems with uncertainties and multiple-packet transmission,, IET Control Theory Appl., 4 (2010), 701.  doi: 10.1049/iet-cta.2009.0090.  Google Scholar

[24]

Y. L. Wang and G. H. Yang, Output tracking control for continuous-time networked control systems with communication constraints,, Proc. of the American Control Conference, (2009), 531.  doi: 10.1109/ACC.2009.5159975.  Google Scholar

[25]

H. H. Wang and G. Y. Tang, Observer-based optimal output tracking for discrete-time systems with multiple state and input delays,, International Journal of Control Automation and Systems, 7 (2009), 57.  doi: 10.1007/s12555-009-0108-9.  Google Scholar

[26]

H. W. Yu, X. M. Zhang, G. P. Lu and Y. F. Zheng, On model based networked control for singularly perturbed systems with nonlinear uncertainties,, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, (2009), 684.  doi: 10.1109/CDC.2009.5400103.  Google Scholar

[27]

D. Yue, Q. L. Han and J. Lam, Network-based robust $H_\infty $ control of systems with uncertainty,, Automatica, 41 (2005), 999.  doi: 10.1016/j.automatica.2004.12.011.  Google Scholar

[28]

X. M. Zhang, et al., Stochastic stability of networked control systems with network-induced delay and data dropout,, in Proceedings of the 45th Ieee Conference on Decision and Control, 14 (2006), 5006.  doi: 10.1109/CDC.2006.376970.  Google Scholar

[29]

H. G. Zhang, J. Yang and C. Y. Su, T-S fuzzy-model-based robust $H_\infty $ design for networked control systems with uncertainties,, IEEE Trans. Ind. Inf., 3 (2007), 289.   Google Scholar

[30]

Q. Zhang, et al., An Enhanced LMI Approach for Mixed $H_2/H_\infty $ Flight Tracking Control,, Chinese Journal of Aeronautics, 24 (2011), 324.   Google Scholar

[31]

H. B. Zeng, et al., Absolute stability and stabilization for Lurie networked control systems,, International Journal of Robust and Nonlinear Control, 21 (2011), 1667.  doi: 10.1002/rnc.1658.  Google Scholar

show all references

References:
[1]

N. Duan and X. J. Xie, Further results on output-feedback stabilization for a class of stochastic nonlinear systems,, IEEE Transactions on Automatic Control, 56 (2011), 1208.  doi: 10.1109/TAC.2011.2107112.  Google Scholar

[2]

D. M. Dawson, et al., Tracking control of rigid-link electrically-driven robot manipulators,, International Journal of Control, 56 (1992), 991.  doi: 10.1080/00207179208934354.  Google Scholar

[3]

H. J. Gao and T. W. Chen, Network-based $H_\infty $ output tracking control,, IEEE Transactions on Automatic Control, 53 (2008), 655.  doi: 10.1109/TAC.2008.919850.  Google Scholar

[4]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[5]

S. Y. Han, et al., Near-Optimal Tracking Control for Discrete-time Systems with Delayed Input,, International Journal of Control Automation and Systems, 8 (2010), 1330.  doi: 10.1007/s12555-010-0619-4.  Google Scholar

[6]

C. J. Hou, Y. P. Chen and Z. L. Lu, Superconvergence property of finite element methods for parabolic optimal control problems,, Journal of Industrial and Management Optimization, 7 (2011), 927.  doi: 10.3934/jimo.2011.7.927.  Google Scholar

[7]

K. Ji and W. J. Kim, Stabilization of networked control system with time delays and data-packet losses,, European Journal of Control, 13 (2007), 343.  doi: 10.3166/ejc.13.343-350.  Google Scholar

[8]

B. Jayawardhana and G. Weiss, Tracking and disturbance rejection for fully actuated mechanical systems,, Automatica, 44 (2008), 2863.  doi: 10.1016/j.automatica.2008.03.030.  Google Scholar

[9]

S. Liu, L. Xie and H. S. Zhang, Linear quadratic tracking problem for discrete-time systems with multiple delays in single input channel,, International Journal of Robust and Nonlinear Control, 20 (2010), 1379.  doi: 10.1002/rnc.1520.  Google Scholar

[10]

M. Mauder, Robust tracking control of nonholonomic dynamic systems with application to the bi-steerable mobile robot,, Automatica, 44 (2008), 2588.  doi: 10.1016/j.automatica.2008.02.012.  Google Scholar

[11]

A. Naskali and A. Onat, Random network delay in model based predictive networked control systems,, in Proc. $6^{nd}$ WSEAS Int. Conf. Appl. Comput. Sci., 1 (2006), 199.   Google Scholar

[12]

A. Onat, et al., Control over imperfect networks: Model-based predictive networked control systems,, IEEE Transactions on Industrial Electronics, 58 (2011), 905.  doi: 10.1109/TIE.2010.2051932.  Google Scholar

[13]

A. Onat and E. Parlakay, Implementation of networked predictive control system,, in Proc. 9th Real-Time Linux Workshop, 1 (2007), 85.   Google Scholar

[14]

T. Suzuki, et al., Controllability and stabilizability of a networked control system with periodic communication constraints,, Systems & Control Letters, 60 (2011), 977.  doi: 10.1016/j.sysconle.2011.08.004.  Google Scholar

[15]

Y. Shi and B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains,, IEEE Transactions on Automatic Control, 54 (2009), 1668.  doi: 10.1109/TAC.2009.2020638.  Google Scholar

[16]

A. Sala, Computer control under time-varying sampling period: An LMI gridding approach,, Automatica, 41 (2005), 2077.  doi: 10.1016/j.automatica.2005.05.017.  Google Scholar

[17]

B. O. S. Teixeira, et al., Spacecraft tracking using sampled-data Kalman filters - An illustrative application of extended and unscented estimators,, IEEE Control Systems Magazine, 28 (2008), 78.  doi: 10.1109/MCS.2008.923231.  Google Scholar

[18]

Y. H. Wang, Z. M. Wang and Y. F. Zheng, On the model-based networked control for singularly perturbed systems,, International Journal of Robust and Nonlinear Control, 6 (2008), 153.  doi: 10.1007/s11768-008-6152-9.  Google Scholar

[19]

J. Wu and T. W. Chen, Design of networked control systems with packet dropouts,, IEEE Transactions on Automatic Control, 52 (2007), 1314.  doi: 10.1109/TAC.2007.900839.  Google Scholar

[20]

H. H. Wang, Optimal tracking for Discrete-Time Systems with Input Delays,, Proceedings of the 2008 Chinese Control and Decision Conference, (2008), 4033.   Google Scholar

[21]

Y. L. Wang and G. H. Yang, Output tracking control for networked control systems with time delay and packet dropout,, International Journal of Control, 81 (2008), 1709.  doi: 10.1080/00207170701836944.  Google Scholar

[22]

Y. Wang and G. Yang, Output tracking control for discrete-time networked control systems,, IEEE American Control Conference, (2009), 5109.  doi: 10.1109/ACC.2009.5159974.  Google Scholar

[23]

D. Wu, J. Wu and S. Chen, Robust $H_\infty $ control for networked control systems with uncertainties and multiple-packet transmission,, IET Control Theory Appl., 4 (2010), 701.  doi: 10.1049/iet-cta.2009.0090.  Google Scholar

[24]

Y. L. Wang and G. H. Yang, Output tracking control for continuous-time networked control systems with communication constraints,, Proc. of the American Control Conference, (2009), 531.  doi: 10.1109/ACC.2009.5159975.  Google Scholar

[25]

H. H. Wang and G. Y. Tang, Observer-based optimal output tracking for discrete-time systems with multiple state and input delays,, International Journal of Control Automation and Systems, 7 (2009), 57.  doi: 10.1007/s12555-009-0108-9.  Google Scholar

[26]

H. W. Yu, X. M. Zhang, G. P. Lu and Y. F. Zheng, On model based networked control for singularly perturbed systems with nonlinear uncertainties,, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, (2009), 684.  doi: 10.1109/CDC.2009.5400103.  Google Scholar

[27]

D. Yue, Q. L. Han and J. Lam, Network-based robust $H_\infty $ control of systems with uncertainty,, Automatica, 41 (2005), 999.  doi: 10.1016/j.automatica.2004.12.011.  Google Scholar

[28]

X. M. Zhang, et al., Stochastic stability of networked control systems with network-induced delay and data dropout,, in Proceedings of the 45th Ieee Conference on Decision and Control, 14 (2006), 5006.  doi: 10.1109/CDC.2006.376970.  Google Scholar

[29]

H. G. Zhang, J. Yang and C. Y. Su, T-S fuzzy-model-based robust $H_\infty $ design for networked control systems with uncertainties,, IEEE Trans. Ind. Inf., 3 (2007), 289.   Google Scholar

[30]

Q. Zhang, et al., An Enhanced LMI Approach for Mixed $H_2/H_\infty $ Flight Tracking Control,, Chinese Journal of Aeronautics, 24 (2011), 324.   Google Scholar

[31]

H. B. Zeng, et al., Absolute stability and stabilization for Lurie networked control systems,, International Journal of Robust and Nonlinear Control, 21 (2011), 1667.  doi: 10.1002/rnc.1658.  Google Scholar

[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[7]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[8]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[9]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[10]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[11]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[12]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[15]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[16]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[17]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[18]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[19]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[20]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]