January  2015, 11(1): 135-144. doi: 10.3934/jimo.2015.11.135

Approximate and exact formulas for the $(Q,r)$ inventory model

1. 

Steven G. Mihaylo College of Business and Economics, California State University-Fullerton, Fullerton, CA 92634, United States

2. 

The Paul Merage School of Business, University of California, Irvine, CA 92697, United States

Received  January 2012 Revised  January 2014 Published  May 2014

In this paper, new results are derived for the $(Q,r)$ stochastic inventory model. We derive approximate formulas for the optimal solution for the particular case of an exponential demand distribution. The approximate solution is within 0.29% of the optimal value. We also derive simple formulas for a Poisson demand distribution. The original expression involves double summation. We simplify the formula and are able to calculate the exact value of the objective function in $O(1)$ time with no need for any summations.
Citation: Zvi Drezner, Carlton Scott. Approximate and exact formulas for the $(Q,r)$ inventory model. Journal of Industrial & Management Optimization, 2015, 11 (1) : 135-144. doi: 10.3934/jimo.2015.11.135
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, 7th printing, (1968).  doi: 10.1119/1.1972842.  Google Scholar

[2]

R. B. S. Brooks and J. Y. Lu, On the convexity of the backorder function for an E.O.Q policy,, Management Science, 15 (1969), 453.   Google Scholar

[3]

A. Federgruen and Y. -S. Zheng, An efficient algorithm for computing an optimal $(r,Q)$ policy in continuous review stochastic inventory systems,, Operations Research, 40 (1992), 808.  doi: 10.1287/opre.40.4.808.  Google Scholar

[4]

G. Gallego, New bounds and heuristics for ($Q,r$) policies,, Management Science, 44 (1998), 219.  doi: 10.1287/mnsc.44.2.219.  Google Scholar

[5]

R. Loxton and Q. Lin, Optimal fleet composition via dynamic programming and golden section search,, Journal of Industrial and Management Optimization, 7 (2011), 875.  doi: 10.3934/jimo.2011.7.875.  Google Scholar

[6]

J. O. Parr, Formula approximations to Brown's service function,, Production and Inventory Management, 13 (1972), 84.   Google Scholar

[7]

D. E. Platt, L. W. Robinson and R. B. Freund, Tractable ($Q,R$) heuristic models for constrained service levels,, Management Science, 43 (1997), 951.   Google Scholar

[8]

P. Zipkin, Foundations of Inventory Management,, McGraw-Hill, (2000).   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, 7th printing, (1968).  doi: 10.1119/1.1972842.  Google Scholar

[2]

R. B. S. Brooks and J. Y. Lu, On the convexity of the backorder function for an E.O.Q policy,, Management Science, 15 (1969), 453.   Google Scholar

[3]

A. Federgruen and Y. -S. Zheng, An efficient algorithm for computing an optimal $(r,Q)$ policy in continuous review stochastic inventory systems,, Operations Research, 40 (1992), 808.  doi: 10.1287/opre.40.4.808.  Google Scholar

[4]

G. Gallego, New bounds and heuristics for ($Q,r$) policies,, Management Science, 44 (1998), 219.  doi: 10.1287/mnsc.44.2.219.  Google Scholar

[5]

R. Loxton and Q. Lin, Optimal fleet composition via dynamic programming and golden section search,, Journal of Industrial and Management Optimization, 7 (2011), 875.  doi: 10.3934/jimo.2011.7.875.  Google Scholar

[6]

J. O. Parr, Formula approximations to Brown's service function,, Production and Inventory Management, 13 (1972), 84.   Google Scholar

[7]

D. E. Platt, L. W. Robinson and R. B. Freund, Tractable ($Q,R$) heuristic models for constrained service levels,, Management Science, 43 (1997), 951.   Google Scholar

[8]

P. Zipkin, Foundations of Inventory Management,, McGraw-Hill, (2000).   Google Scholar

[1]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[2]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[3]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[5]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[6]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[7]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[8]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[9]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[10]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[11]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[12]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]