-
Previous Article
Modeling and solving alternative financial solutions seeking
- JIMO Home
- This Issue
-
Next Article
Statistical process control optimization with variable sampling interval and nonlinear expected loss
Approximate and exact formulas for the $(Q,r)$ inventory model
1. | Steven G. Mihaylo College of Business and Economics, California State University-Fullerton, Fullerton, CA 92634, United States |
2. | The Paul Merage School of Business, University of California, Irvine, CA 92697, United States |
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, 7th printing, (1968).
doi: 10.1119/1.1972842. |
[2] |
R. B. S. Brooks and J. Y. Lu, On the convexity of the backorder function for an E.O.Q policy,, Management Science, 15 (1969), 453. Google Scholar |
[3] |
A. Federgruen and Y. -S. Zheng, An efficient algorithm for computing an optimal $(r,Q)$ policy in continuous review stochastic inventory systems,, Operations Research, 40 (1992), 808.
doi: 10.1287/opre.40.4.808. |
[4] |
G. Gallego, New bounds and heuristics for ($Q,r$) policies,, Management Science, 44 (1998), 219.
doi: 10.1287/mnsc.44.2.219. |
[5] |
R. Loxton and Q. Lin, Optimal fleet composition via dynamic programming and golden section search,, Journal of Industrial and Management Optimization, 7 (2011), 875.
doi: 10.3934/jimo.2011.7.875. |
[6] |
J. O. Parr, Formula approximations to Brown's service function,, Production and Inventory Management, 13 (1972), 84. Google Scholar |
[7] |
D. E. Platt, L. W. Robinson and R. B. Freund, Tractable ($Q,R$) heuristic models for constrained service levels,, Management Science, 43 (1997), 951. Google Scholar |
[8] |
P. Zipkin, Foundations of Inventory Management,, McGraw-Hill, (2000). Google Scholar |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, 7th printing, (1968).
doi: 10.1119/1.1972842. |
[2] |
R. B. S. Brooks and J. Y. Lu, On the convexity of the backorder function for an E.O.Q policy,, Management Science, 15 (1969), 453. Google Scholar |
[3] |
A. Federgruen and Y. -S. Zheng, An efficient algorithm for computing an optimal $(r,Q)$ policy in continuous review stochastic inventory systems,, Operations Research, 40 (1992), 808.
doi: 10.1287/opre.40.4.808. |
[4] |
G. Gallego, New bounds and heuristics for ($Q,r$) policies,, Management Science, 44 (1998), 219.
doi: 10.1287/mnsc.44.2.219. |
[5] |
R. Loxton and Q. Lin, Optimal fleet composition via dynamic programming and golden section search,, Journal of Industrial and Management Optimization, 7 (2011), 875.
doi: 10.3934/jimo.2011.7.875. |
[6] |
J. O. Parr, Formula approximations to Brown's service function,, Production and Inventory Management, 13 (1972), 84. Google Scholar |
[7] |
D. E. Platt, L. W. Robinson and R. B. Freund, Tractable ($Q,R$) heuristic models for constrained service levels,, Management Science, 43 (1997), 951. Google Scholar |
[8] |
P. Zipkin, Foundations of Inventory Management,, McGraw-Hill, (2000). Google Scholar |
[1] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[2] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[3] |
Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021036 |
[4] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[5] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[6] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[7] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[8] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[9] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[10] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[11] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[12] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]