-
Previous Article
Optimal double-resource assignment for a distributed multistate network
- JIMO Home
- This Issue
-
Next Article
Optimal tracking control for networked control systems with random time delays and packet dropouts
Optimal acquisition, inventory and production decisions for a closed-loop manufacturing system with legislation constraint
1. | School of Science, Tianjin University, Tianjin 300072, China, China |
2. | School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China |
3. | School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005 |
References:
[1] |
B. Atamer, I.Bakal and Z. Pelin BayIndIr, Optimal pricing and production decisions in utilizing reusable containers,, Int. J. Product. Econ., 143 (2013), 222.
doi: 10.1016/j.ijpe.2011.08.007. |
[2] |
I. Bakal and E. Akcali, Effects of random yield in reverse supply chains with price-sensitive supply and demand,, Prod. Oper. Manag., 15 (2006), 407. Google Scholar |
[3] |
S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511804441. |
[4] |
R. Dekker, M. Fleischmann, K. Inderfurth and L. N. V. Wassenhove, Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains,, Springer-Verlag, (2004). Google Scholar |
[5] |
I. Dobos and K. Richter, A production/recycling model with stationary demand and return rates,, Cent Eur. J Oper. Res., 11 (2003), 35.
|
[6] |
M. Fleischmann, J. Bloemhof-Ruwaard, R. Dekker, E. van der Lann, J. van Nunen and L. N. V. Wassenhove, Quantitative models for reverse logistics: A review,, Eur. J. Oper. Res., 103 (1997), 1. Google Scholar |
[7] |
M. R. Galbreth and J. D. Blackburn, Optimal acquisition and sorting policies for remanufacturing,, Prod. Oper. Manag., 15 (2006), 384. Google Scholar |
[8] |
V. D. R. Guide Jr. and V. Jayaraman, Product acquisition management: Current industry practice and a proposed framework,, Int. J. Prod. Res., 38 (2000), 3779. Google Scholar |
[9] |
V. D. R. Guide Jr., R. H. Teunter and L. N. V. Wassenhove, Matching demand and supply to maximize profits from remanufacturing,, Manufacturing and Service Operations Management, 5 (2003), 303. Google Scholar |
[10] |
I. Karakayal, H. Emir-Farinas and E. Akal, Analysis of decentralized collection and processing of end-of-life products,, J. Oper. Manag., 25 (2007), 1161.
doi: 10.1016/j.jom.2007.01.017. |
[11] |
I. Karakayal, H. Emir-Farinas and E. Akal, Pricing and recovery planning for remanufacturing operations with multiple used products and multiple reusable components,, Comput. Ind. Eng., 59 (2010), 55. Google Scholar |
[12] |
G. P. Kiesmuller and E. A. van der Laan, An inventory model with dependent product demands and returns,, Int. J. Product. Econ., 72 (2001), 73.
doi: 10.1016/S0925-5273(00)00080-3. |
[13] |
F. Hillier and J. Lieberman, Introduction to Operations Research,, $4^{nd}$ Edition, (1986). Google Scholar |
[14] |
E. L. Porteus, Foundation of Stochastic Inventory Theory,, Stanford University Press, (2002). Google Scholar |
[15] |
S. M. Ross, Introduction to Stochastic Dynamic Programming,, Academic Press, (1983).
|
[16] |
X. Sun, Y. Li, G.Kannan and Y.Zhou., Integrating dynamic acquisition pricing and remanufacturing decisions under random price-sensitive returns,, Int. J. Adv. Manuf. Tech., 68 (2013), 933.
doi: 10.1007/s00170-013-4954-5. |
[17] |
X. Xu, Y. Li and X. Cai, Optimal polices in hybrid manufacturing/remanufacturing systems with random price-sensitive product returns,, Int. J. Prod. Res., 50 (2012), 6978. Google Scholar |
[18] |
X. Zhou and Y. Yu, Optimal product acquisition, pricing, and inventory management for systems with remanufacturing,, Oper. Res., 59 (2011), 514.
doi: 10.1287/opre.1100.0898. |
show all references
References:
[1] |
B. Atamer, I.Bakal and Z. Pelin BayIndIr, Optimal pricing and production decisions in utilizing reusable containers,, Int. J. Product. Econ., 143 (2013), 222.
doi: 10.1016/j.ijpe.2011.08.007. |
[2] |
I. Bakal and E. Akcali, Effects of random yield in reverse supply chains with price-sensitive supply and demand,, Prod. Oper. Manag., 15 (2006), 407. Google Scholar |
[3] |
S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511804441. |
[4] |
R. Dekker, M. Fleischmann, K. Inderfurth and L. N. V. Wassenhove, Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains,, Springer-Verlag, (2004). Google Scholar |
[5] |
I. Dobos and K. Richter, A production/recycling model with stationary demand and return rates,, Cent Eur. J Oper. Res., 11 (2003), 35.
|
[6] |
M. Fleischmann, J. Bloemhof-Ruwaard, R. Dekker, E. van der Lann, J. van Nunen and L. N. V. Wassenhove, Quantitative models for reverse logistics: A review,, Eur. J. Oper. Res., 103 (1997), 1. Google Scholar |
[7] |
M. R. Galbreth and J. D. Blackburn, Optimal acquisition and sorting policies for remanufacturing,, Prod. Oper. Manag., 15 (2006), 384. Google Scholar |
[8] |
V. D. R. Guide Jr. and V. Jayaraman, Product acquisition management: Current industry practice and a proposed framework,, Int. J. Prod. Res., 38 (2000), 3779. Google Scholar |
[9] |
V. D. R. Guide Jr., R. H. Teunter and L. N. V. Wassenhove, Matching demand and supply to maximize profits from remanufacturing,, Manufacturing and Service Operations Management, 5 (2003), 303. Google Scholar |
[10] |
I. Karakayal, H. Emir-Farinas and E. Akal, Analysis of decentralized collection and processing of end-of-life products,, J. Oper. Manag., 25 (2007), 1161.
doi: 10.1016/j.jom.2007.01.017. |
[11] |
I. Karakayal, H. Emir-Farinas and E. Akal, Pricing and recovery planning for remanufacturing operations with multiple used products and multiple reusable components,, Comput. Ind. Eng., 59 (2010), 55. Google Scholar |
[12] |
G. P. Kiesmuller and E. A. van der Laan, An inventory model with dependent product demands and returns,, Int. J. Product. Econ., 72 (2001), 73.
doi: 10.1016/S0925-5273(00)00080-3. |
[13] |
F. Hillier and J. Lieberman, Introduction to Operations Research,, $4^{nd}$ Edition, (1986). Google Scholar |
[14] |
E. L. Porteus, Foundation of Stochastic Inventory Theory,, Stanford University Press, (2002). Google Scholar |
[15] |
S. M. Ross, Introduction to Stochastic Dynamic Programming,, Academic Press, (1983).
|
[16] |
X. Sun, Y. Li, G.Kannan and Y.Zhou., Integrating dynamic acquisition pricing and remanufacturing decisions under random price-sensitive returns,, Int. J. Adv. Manuf. Tech., 68 (2013), 933.
doi: 10.1007/s00170-013-4954-5. |
[17] |
X. Xu, Y. Li and X. Cai, Optimal polices in hybrid manufacturing/remanufacturing systems with random price-sensitive product returns,, Int. J. Prod. Res., 50 (2012), 6978. Google Scholar |
[18] |
X. Zhou and Y. Yu, Optimal product acquisition, pricing, and inventory management for systems with remanufacturing,, Oper. Res., 59 (2011), 514.
doi: 10.1287/opre.1100.0898. |
[1] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[2] |
Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983 |
[3] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[6] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[7] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[8] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[11] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[12] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[13] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[14] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[15] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[16] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[17] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[18] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[19] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[20] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]