January  2015, 11(1): 241-264. doi: 10.3934/jimo.2015.11.241

A finite difference method for pricing European and American options under a geometric Lévy process

1. 

School of Mathematics & Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received  September 2013 Revised  January 2014 Published  May 2014

In this paper we develop a numerical approach to a fractional-order differential Linear Complementarity Problem (LCP) arising in pricing European and American options under a geometric Lévy process. The LCP is first approximated by a nonlinear penalty fractional Black-Scholes (fBS) equation. We then propose a finite difference scheme for the penalty fBS equation. We show that both the continuous and the discretized fBS equations are uniquely solvable and establish the convergence of the numerical solution to the viscosity solution of the penalty fBS equation by proving the consistency, stability and monotonicity of the numerical scheme. We also show that the discretization has the 2nd-order truncation error in both the spatial and time mesh sizes. Numerical results are presented to demonstrate the accuracy and usefulness of the numerical method for pricing both European and American options under the geometric Lévy process.
Citation: Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241
References:
[1]

L. Angermann and S. Wang, Convergence of a fitted finite volume method for the penalized BlackScholes equation governing European and American Option pricing,, Numerische Mathematik, 106 (2007), 1.  doi: 10.1007/s00211-006-0057-7.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637.   Google Scholar

[3]

G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory,, Numerical methods in finance, (1997), 1.   Google Scholar

[4]

S. I. Boyarchenko and S. Levendorskii, Non-Gaussian Merton-Black-Scholes Theory,, World Scientific Singapore, (2002).  doi: 10.1142/9789812777485.  Google Scholar

[5]

P. Carr, H. Geman, D. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation,, The Journal of Business, 75 (2002), 305.  doi: 10.1086/338705.  Google Scholar

[6]

A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps,, Physica A: Statistical Mechanics and its Applications, 374 (2007), 749.  doi: 10.1016/j.physa.2006.08.071.  Google Scholar

[7]

C. M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion,, Journal of Computational Physics, 227 (2007), 886.  doi: 10.1016/j.jcp.2007.05.012.  Google Scholar

[8]

M. Chen and C. Huang, A power penalty method for the general traffic assignment problem with elastic demand,, Journal of Industrial and Management Optimization, 10 (2014), 1019.  doi: 10.3934/jimo.2014.10.1019.  Google Scholar

[9]

W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation,, Computers and Mathematics with Applications, 67 (2014), 77.  doi: 10.1016/j.camwa.2013.10.007.  Google Scholar

[10]

R. Cont and P. Tankov, Financial Modelling With Jump Processes,, Chapman & Hall, (2004).   Google Scholar

[11]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models,, SIAM Journal on Numerical Analysis, 43 (2005), 1596.  doi: 10.1137/S0036142903436186.  Google Scholar

[12]

V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation,, Numerical Methods for Partial Differential Equations, 22 (2006), 558.  doi: 10.1002/num.20112.  Google Scholar

[13]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem,, Operations Research Letters, 38 (2010), 72.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[14]

C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem,, Nonlinear Analysis, 75 (2012), 588.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[15]

D. C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation,, Applied Mathematics and Computation, 219 (2013), 8818.  doi: 10.1016/j.amc.2012.12.077.  Google Scholar

[16]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279.  doi: 10.1007/s10957-009-9559-7.  Google Scholar

[17]

W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme,, Journal of Industrial and Management Optimization, 9 (2013), 365.  doi: 10.3934/jimo.2013.9.365.  Google Scholar

[18]

V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias and H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order,, Journal of Computational Physics, 192 (2003), 406.  doi: 10.1016/j.jcp.2003.07.008.  Google Scholar

[19]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication. John Wiley & Sons, (1993).   Google Scholar

[20]

K. B. Oldham and J. Spanier, The fractional calculus,, Theory and applications of differentiation and integration to arbitrary order. With an annotated chronological bibliography by Bertram Ross. Mathematics in Science and Engineering, 111 (1974), 76.   Google Scholar

[21]

C. Tadjeran, M. M. Meerschaert and H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation,, Journal of Computational Physics, 213 (2006), 205.  doi: 10.1016/j.jcp.2005.08.008.  Google Scholar

[22]

C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation,, Journal of Computational Physics, 220 (2007), 813.  doi: 10.1016/j.jcp.2006.05.030.  Google Scholar

[23]

S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing,, IMA Journal of Numerical Analysis, 24 (2004), 699.  doi: 10.1093/imanum/24.4.699.  Google Scholar

[24]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[25]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems,, Operations Research Letters, 36 (2008), 211.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[26]

S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations,, Journal of Computational Physics, 216 (2006), 264.  doi: 10.1016/j.jcp.2005.12.006.  Google Scholar

[27]

P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation., Oxford Financial Press, (1993).   Google Scholar

[28]

K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option,, Journal of Industrial and Management Optimization, 7 (2011), 435.  doi: 10.3934/jimo.2011.7.435.  Google Scholar

[29]

K. Zhang and S. Wang, Pricing American bond options using a penalty method,, Automatica, 48 (2012), 472.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

[30]

R. Zvan, P. A. Forsyth P. A. and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, Comput. Appl. Math., 91 (1998), 199.  doi: 10.1016/S0377-0427(98)00037-5.  Google Scholar

show all references

References:
[1]

L. Angermann and S. Wang, Convergence of a fitted finite volume method for the penalized BlackScholes equation governing European and American Option pricing,, Numerische Mathematik, 106 (2007), 1.  doi: 10.1007/s00211-006-0057-7.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The Journal of Political Economy, 81 (1973), 637.   Google Scholar

[3]

G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory,, Numerical methods in finance, (1997), 1.   Google Scholar

[4]

S. I. Boyarchenko and S. Levendorskii, Non-Gaussian Merton-Black-Scholes Theory,, World Scientific Singapore, (2002).  doi: 10.1142/9789812777485.  Google Scholar

[5]

P. Carr, H. Geman, D. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation,, The Journal of Business, 75 (2002), 305.  doi: 10.1086/338705.  Google Scholar

[6]

A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps,, Physica A: Statistical Mechanics and its Applications, 374 (2007), 749.  doi: 10.1016/j.physa.2006.08.071.  Google Scholar

[7]

C. M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion,, Journal of Computational Physics, 227 (2007), 886.  doi: 10.1016/j.jcp.2007.05.012.  Google Scholar

[8]

M. Chen and C. Huang, A power penalty method for the general traffic assignment problem with elastic demand,, Journal of Industrial and Management Optimization, 10 (2014), 1019.  doi: 10.3934/jimo.2014.10.1019.  Google Scholar

[9]

W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation,, Computers and Mathematics with Applications, 67 (2014), 77.  doi: 10.1016/j.camwa.2013.10.007.  Google Scholar

[10]

R. Cont and P. Tankov, Financial Modelling With Jump Processes,, Chapman & Hall, (2004).   Google Scholar

[11]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models,, SIAM Journal on Numerical Analysis, 43 (2005), 1596.  doi: 10.1137/S0036142903436186.  Google Scholar

[12]

V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation,, Numerical Methods for Partial Differential Equations, 22 (2006), 558.  doi: 10.1002/num.20112.  Google Scholar

[13]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem,, Operations Research Letters, 38 (2010), 72.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[14]

C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem,, Nonlinear Analysis, 75 (2012), 588.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[15]

D. C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation,, Applied Mathematics and Computation, 219 (2013), 8818.  doi: 10.1016/j.amc.2012.12.077.  Google Scholar

[16]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279.  doi: 10.1007/s10957-009-9559-7.  Google Scholar

[17]

W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme,, Journal of Industrial and Management Optimization, 9 (2013), 365.  doi: 10.3934/jimo.2013.9.365.  Google Scholar

[18]

V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias and H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order,, Journal of Computational Physics, 192 (2003), 406.  doi: 10.1016/j.jcp.2003.07.008.  Google Scholar

[19]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication. John Wiley & Sons, (1993).   Google Scholar

[20]

K. B. Oldham and J. Spanier, The fractional calculus,, Theory and applications of differentiation and integration to arbitrary order. With an annotated chronological bibliography by Bertram Ross. Mathematics in Science and Engineering, 111 (1974), 76.   Google Scholar

[21]

C. Tadjeran, M. M. Meerschaert and H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation,, Journal of Computational Physics, 213 (2006), 205.  doi: 10.1016/j.jcp.2005.08.008.  Google Scholar

[22]

C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation,, Journal of Computational Physics, 220 (2007), 813.  doi: 10.1016/j.jcp.2006.05.030.  Google Scholar

[23]

S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing,, IMA Journal of Numerical Analysis, 24 (2004), 699.  doi: 10.1093/imanum/24.4.699.  Google Scholar

[24]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[25]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems,, Operations Research Letters, 36 (2008), 211.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[26]

S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations,, Journal of Computational Physics, 216 (2006), 264.  doi: 10.1016/j.jcp.2005.12.006.  Google Scholar

[27]

P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation., Oxford Financial Press, (1993).   Google Scholar

[28]

K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option,, Journal of Industrial and Management Optimization, 7 (2011), 435.  doi: 10.3934/jimo.2011.7.435.  Google Scholar

[29]

K. Zhang and S. Wang, Pricing American bond options using a penalty method,, Automatica, 48 (2012), 472.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

[30]

R. Zvan, P. A. Forsyth P. A. and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, Comput. Appl. Math., 91 (1998), 199.  doi: 10.1016/S0377-0427(98)00037-5.  Google Scholar

[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[3]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[6]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[7]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[10]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[11]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[12]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[13]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[14]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[15]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[16]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[17]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[18]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[19]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[20]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]