-
Previous Article
An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management
- JIMO Home
- This Issue
-
Next Article
A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_{E}$ principle
Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance
1. | School of Mathematics, Shandong University, Jinan 250100, China, China |
References:
[1] |
T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information, Journal of Optimization Theory and Applications, 139 (2008), 463-483.
doi: 10.1007/s10957-008-9398-y. |
[2] |
T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Mathematics in Science and Engineering, 160. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. |
[3] |
A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control, ser. Lecture Notes in Mathematics, New York: Springer Verlag, 1982. |
[4] |
A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients, SIAM J. Control Optim., 33 (1995), 590-624.
doi: 10.1137/S0363012992240722. |
[5] |
A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Math. Finance, 10 (2000), 141-156.
doi: 10.1111/1467-9965.00086. |
[6] |
M. H. A. Davis and A. Norman, Portfolio selection with transaction costs, Math. Oper. Res., 15 (1990), 676-713.
doi: 10.1287/moor.15.4.676. |
[7] |
D. Duffie and L. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394.
doi: 10.2307/2951600. |
[8] |
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022. |
[9] |
S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations, Stochastic Anal. Appl., 17 (1999), 117-130.
doi: 10.1080/07362999908809591. |
[10] |
E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications, J. Math. Anal. Appl., 386 (2012), 412-427.
doi: 10.1016/j.jmaa.2011.08.009. |
[11] |
R. Isaacs, Differential Games, Parts 1-4. The RAND Corporation, Research Memorandums Nos. RM-1391, RM-1411,RM-1486, 1954-55. |
[12] |
M. Jeanblanc-Pique, Impulse control method and exchange rate, Math. Finance, 3 (1993), 161-177.
doi: 10.1111/j.1467-9965.1993.tb00085.x. |
[13] |
R. Korn, Some appliations of impulse control in mathematical finance, Math. Meth. Oper. Res., 50 (1999), 493-518.
doi: 10.1007/s001860050083. |
[14] |
A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility, IEEE Trans. Autom. Control, 46 (2001), 563-578.
doi: 10.1109/9.917658. |
[15] |
B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003.
doi: 10.1007/978-1-4615-0095-7. |
[16] |
B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM J. Control Optim., 40 (2002), 1765-1790.
doi: 10.1137/S0363012900376013. |
[17] |
L. Pan and J. Yong, A differential game with multi-level of hierarchy, J. Math. Anal. Appl., 161 (1991), 522-544.
doi: 10.1016/0022-247X(91)90348-4. |
[18] |
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6. |
[19] |
S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054. |
[20] |
S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144.
doi: 10.1007/BF01195978. |
[21] |
G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE Trans. Autom. Control, 54 (2009), 1230-1242.
doi: 10.1109/TAC.2009.2019794. |
[22] |
G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications, IEEE Trans. Autom. Control, 55 (2010), 1742-1747.
doi: 10.1109/TAC.2010.2048052. |
[23] |
G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications, Automatica, 48 (2012), 342-352.
doi: 10.1016/j.automatica.2011.11.010. |
[24] |
Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems, Syst. Sci. Math. Sci., 11 (1998), 249-259. |
[25] |
W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system, Journal of the Australian Math. Society B, 37 (1995), 172-185.
doi: 10.1017/S0334270000007645. |
[26] |
D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006. |
[27] |
J. Yong, A leader-follower stochastic linear quadratic differential game, SIAM J. Control Optim., 41 (2002), 1015-1041.
doi: 10.1137/S0363012901391925. |
show all references
References:
[1] |
T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information, Journal of Optimization Theory and Applications, 139 (2008), 463-483.
doi: 10.1007/s10957-008-9398-y. |
[2] |
T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Mathematics in Science and Engineering, 160. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. |
[3] |
A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control, ser. Lecture Notes in Mathematics, New York: Springer Verlag, 1982. |
[4] |
A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients, SIAM J. Control Optim., 33 (1995), 590-624.
doi: 10.1137/S0363012992240722. |
[5] |
A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Math. Finance, 10 (2000), 141-156.
doi: 10.1111/1467-9965.00086. |
[6] |
M. H. A. Davis and A. Norman, Portfolio selection with transaction costs, Math. Oper. Res., 15 (1990), 676-713.
doi: 10.1287/moor.15.4.676. |
[7] |
D. Duffie and L. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394.
doi: 10.2307/2951600. |
[8] |
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022. |
[9] |
S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations, Stochastic Anal. Appl., 17 (1999), 117-130.
doi: 10.1080/07362999908809591. |
[10] |
E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications, J. Math. Anal. Appl., 386 (2012), 412-427.
doi: 10.1016/j.jmaa.2011.08.009. |
[11] |
R. Isaacs, Differential Games, Parts 1-4. The RAND Corporation, Research Memorandums Nos. RM-1391, RM-1411,RM-1486, 1954-55. |
[12] |
M. Jeanblanc-Pique, Impulse control method and exchange rate, Math. Finance, 3 (1993), 161-177.
doi: 10.1111/j.1467-9965.1993.tb00085.x. |
[13] |
R. Korn, Some appliations of impulse control in mathematical finance, Math. Meth. Oper. Res., 50 (1999), 493-518.
doi: 10.1007/s001860050083. |
[14] |
A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility, IEEE Trans. Autom. Control, 46 (2001), 563-578.
doi: 10.1109/9.917658. |
[15] |
B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003.
doi: 10.1007/978-1-4615-0095-7. |
[16] |
B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM J. Control Optim., 40 (2002), 1765-1790.
doi: 10.1137/S0363012900376013. |
[17] |
L. Pan and J. Yong, A differential game with multi-level of hierarchy, J. Math. Anal. Appl., 161 (1991), 522-544.
doi: 10.1016/0022-247X(91)90348-4. |
[18] |
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6. |
[19] |
S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054. |
[20] |
S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144.
doi: 10.1007/BF01195978. |
[21] |
G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE Trans. Autom. Control, 54 (2009), 1230-1242.
doi: 10.1109/TAC.2009.2019794. |
[22] |
G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications, IEEE Trans. Autom. Control, 55 (2010), 1742-1747.
doi: 10.1109/TAC.2010.2048052. |
[23] |
G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications, Automatica, 48 (2012), 342-352.
doi: 10.1016/j.automatica.2011.11.010. |
[24] |
Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems, Syst. Sci. Math. Sci., 11 (1998), 249-259. |
[25] |
W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system, Journal of the Australian Math. Society B, 37 (1995), 172-185.
doi: 10.1017/S0334270000007645. |
[26] |
D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006. |
[27] |
J. Yong, A leader-follower stochastic linear quadratic differential game, SIAM J. Control Optim., 41 (2002), 1015-1041.
doi: 10.1137/S0363012901391925. |
[1] |
Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control and Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013 |
[2] |
Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115 |
[3] |
Jiongmin Yong. Forward-backward stochastic differential equations: Initiation, development and beyond. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022011 |
[4] |
Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control and Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010 |
[5] |
Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045 |
[6] |
Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035 |
[7] |
Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002 |
[8] |
Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447 |
[9] |
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613 |
[10] |
Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7 |
[11] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047 |
[12] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control and Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[13] |
Ying Liu, Yabing Sun, Weidong Zhao. Explicit multistep stochastic characteristic approximation methods for forward backward stochastic differential equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 773-795. doi: 10.3934/dcdss.2021044 |
[14] |
Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153 |
[15] |
Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001 |
[16] |
Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control and Related Fields, 2022, 12 (2) : 343-370. doi: 10.3934/mcrf.2021025 |
[17] |
Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics and Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002 |
[18] |
Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028 |
[19] |
Yu Li, Kok Lay Teo, Shuhua Zhang. A new feedback form of open-loop Stackelberg strategy in a general linear-quadratic differential game. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022105 |
[20] |
Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]