• Previous Article
    An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management
  • JIMO Home
  • This Issue
  • Next Article
    A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_{E}$ principle
January  2015, 11(1): 27-40. doi: 10.3934/jimo.2015.11.27

Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance

1. 

School of Mathematics, Shandong University, Jinan 250100, China, China

Received  January 2013 Revised  November 2013 Published  May 2014

This paper is concerned with a maximum principle for a new class of non-zero sum stochastic differential games. Compared with the existing literature, the game systems in this paper are forward-backward systems in which the control variables consist of two components: the continuous controls and the impulse controls. Necessary optimality conditions and sufficient optimality conditions in the form of maximum principle are obtained respectively for open-loop Nash equilibrium point of the foregoing games. A fund management problem is used to shed light on the application of the theoretical results, and the optimal investment portfolio and optimal impulse consumption strategy are obtained explicitly.
Citation: Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial and Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27
References:
[1]

T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information, Journal of Optimization Theory and Applications, 139 (2008), 463-483. doi: 10.1007/s10957-008-9398-y.

[2]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Mathematics in Science and Engineering, 160. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

[3]

A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control, ser. Lecture Notes in Mathematics, New York: Springer Verlag, 1982.

[4]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients, SIAM J. Control Optim., 33 (1995), 590-624. doi: 10.1137/S0363012992240722.

[5]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Math. Finance, 10 (2000), 141-156. doi: 10.1111/1467-9965.00086.

[6]

M. H. A. Davis and A. Norman, Portfolio selection with transaction costs, Math. Oper. Res., 15 (1990), 676-713. doi: 10.1287/moor.15.4.676.

[7]

D. Duffie and L. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394. doi: 10.2307/2951600.

[8]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71. doi: 10.1111/1467-9965.00022.

[9]

S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations, Stochastic Anal. Appl., 17 (1999), 117-130. doi: 10.1080/07362999908809591.

[10]

E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications, J. Math. Anal. Appl., 386 (2012), 412-427. doi: 10.1016/j.jmaa.2011.08.009.

[11]

R. Isaacs, Differential Games, Parts 1-4. The RAND Corporation, Research Memorandums Nos. RM-1391, RM-1411,RM-1486, 1954-55.

[12]

M. Jeanblanc-Pique, Impulse control method and exchange rate, Math. Finance, 3 (1993), 161-177. doi: 10.1111/j.1467-9965.1993.tb00085.x.

[13]

R. Korn, Some appliations of impulse control in mathematical finance, Math. Meth. Oper. Res., 50 (1999), 493-518. doi: 10.1007/s001860050083.

[14]

A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility, IEEE Trans. Autom. Control, 46 (2001), 563-578. doi: 10.1109/9.917658.

[15]

B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.

[16]

B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM J. Control Optim., 40 (2002), 1765-1790. doi: 10.1137/S0363012900376013.

[17]

L. Pan and J. Yong, A differential game with multi-level of hierarchy, J. Math. Anal. Appl., 161 (1991), 522-544. doi: 10.1016/0022-247X(91)90348-4.

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55-61. doi: 10.1016/0167-6911(90)90082-6.

[19]

S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979. doi: 10.1137/0328054.

[20]

S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144. doi: 10.1007/BF01195978.

[21]

G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE Trans. Autom. Control, 54 (2009), 1230-1242. doi: 10.1109/TAC.2009.2019794.

[22]

G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications, IEEE Trans. Autom. Control, 55 (2010), 1742-1747. doi: 10.1109/TAC.2010.2048052.

[23]

G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications, Automatica, 48 (2012), 342-352. doi: 10.1016/j.automatica.2011.11.010.

[24]

Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems, Syst. Sci. Math. Sci., 11 (1998), 249-259.

[25]

W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system, Journal of the Australian Math. Society B, 37 (1995), 172-185. doi: 10.1017/S0334270000007645.

[26]

D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006.

[27]

J. Yong, A leader-follower stochastic linear quadratic differential game, SIAM J. Control Optim., 41 (2002), 1015-1041. doi: 10.1137/S0363012901391925.

show all references

References:
[1]

T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information, Journal of Optimization Theory and Applications, 139 (2008), 463-483. doi: 10.1007/s10957-008-9398-y.

[2]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Mathematics in Science and Engineering, 160. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

[3]

A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control, ser. Lecture Notes in Mathematics, New York: Springer Verlag, 1982.

[4]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients, SIAM J. Control Optim., 33 (1995), 590-624. doi: 10.1137/S0363012992240722.

[5]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Math. Finance, 10 (2000), 141-156. doi: 10.1111/1467-9965.00086.

[6]

M. H. A. Davis and A. Norman, Portfolio selection with transaction costs, Math. Oper. Res., 15 (1990), 676-713. doi: 10.1287/moor.15.4.676.

[7]

D. Duffie and L. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394. doi: 10.2307/2951600.

[8]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71. doi: 10.1111/1467-9965.00022.

[9]

S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations, Stochastic Anal. Appl., 17 (1999), 117-130. doi: 10.1080/07362999908809591.

[10]

E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications, J. Math. Anal. Appl., 386 (2012), 412-427. doi: 10.1016/j.jmaa.2011.08.009.

[11]

R. Isaacs, Differential Games, Parts 1-4. The RAND Corporation, Research Memorandums Nos. RM-1391, RM-1411,RM-1486, 1954-55.

[12]

M. Jeanblanc-Pique, Impulse control method and exchange rate, Math. Finance, 3 (1993), 161-177. doi: 10.1111/j.1467-9965.1993.tb00085.x.

[13]

R. Korn, Some appliations of impulse control in mathematical finance, Math. Meth. Oper. Res., 50 (1999), 493-518. doi: 10.1007/s001860050083.

[14]

A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility, IEEE Trans. Autom. Control, 46 (2001), 563-578. doi: 10.1109/9.917658.

[15]

B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.

[16]

B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM J. Control Optim., 40 (2002), 1765-1790. doi: 10.1137/S0363012900376013.

[17]

L. Pan and J. Yong, A differential game with multi-level of hierarchy, J. Math. Anal. Appl., 161 (1991), 522-544. doi: 10.1016/0022-247X(91)90348-4.

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55-61. doi: 10.1016/0167-6911(90)90082-6.

[19]

S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979. doi: 10.1137/0328054.

[20]

S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144. doi: 10.1007/BF01195978.

[21]

G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE Trans. Autom. Control, 54 (2009), 1230-1242. doi: 10.1109/TAC.2009.2019794.

[22]

G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications, IEEE Trans. Autom. Control, 55 (2010), 1742-1747. doi: 10.1109/TAC.2010.2048052.

[23]

G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications, Automatica, 48 (2012), 342-352. doi: 10.1016/j.automatica.2011.11.010.

[24]

Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems, Syst. Sci. Math. Sci., 11 (1998), 249-259.

[25]

W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system, Journal of the Australian Math. Society B, 37 (1995), 172-185. doi: 10.1017/S0334270000007645.

[26]

D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006.

[27]

J. Yong, A leader-follower stochastic linear quadratic differential game, SIAM J. Control Optim., 41 (2002), 1015-1041. doi: 10.1137/S0363012901391925.

[1]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control and Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[2]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[3]

Jiongmin Yong. Forward-backward stochastic differential equations: Initiation, development and beyond. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022011

[4]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control and Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[5]

Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045

[6]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[7]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[8]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[9]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[10]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047

[12]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control and Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[13]

Ying Liu, Yabing Sun, Weidong Zhao. Explicit multistep stochastic characteristic approximation methods for forward backward stochastic differential equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 773-795. doi: 10.3934/dcdss.2021044

[14]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[15]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[16]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control and Related Fields, 2022, 12 (2) : 343-370. doi: 10.3934/mcrf.2021025

[17]

Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics and Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002

[18]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[19]

Yu Li, Kok Lay Teo, Shuhua Zhang. A new feedback form of open-loop Stackelberg strategy in a general linear-quadratic differential game. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022105

[20]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (147)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]