-
Previous Article
An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management
- JIMO Home
- This Issue
-
Next Article
A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_{E}$ principle
Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance
1. | School of Mathematics, Shandong University, Jinan 250100, China, China |
References:
[1] |
T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information,, Journal of Optimization Theory and Applications, 139 (2008), 463.
doi: 10.1007/s10957-008-9398-y. |
[2] |
T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,, Mathematics in Science and Engineering, (1982).
|
[3] |
A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control,, ser. Lecture Notes in Mathematics, (1982).
|
[4] |
A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.
doi: 10.1137/S0363012992240722. |
[5] |
A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves,, Math. Finance, 10 (2000), 141.
doi: 10.1111/1467-9965.00086. |
[6] |
M. H. A. Davis and A. Norman, Portfolio selection with transaction costs,, Math. Oper. Res., 15 (1990), 676.
doi: 10.1287/moor.15.4.676. |
[7] |
D. Duffie and L. Epstein, Stochastic differential utility,, Econometrica, 60 (1992), 353.
doi: 10.2307/2951600. |
[8] |
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Math. Finance, 7 (1997), 1.
doi: 10.1111/1467-9965.00022. |
[9] |
S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations,, Stochastic Anal. Appl., 17 (1999), 117.
doi: 10.1080/07362999908809591. |
[10] |
E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications,, J. Math. Anal. Appl., 386 (2012), 412.
doi: 10.1016/j.jmaa.2011.08.009. |
[11] |
R. Isaacs, Differential Games,, Parts 1-4. The RAND Corporation, (): 1. Google Scholar |
[12] |
M. Jeanblanc-Pique, Impulse control method and exchange rate,, Math. Finance, 3 (1993), 161.
doi: 10.1111/j.1467-9965.1993.tb00085.x. |
[13] |
R. Korn, Some appliations of impulse control in mathematical finance,, Math. Meth. Oper. Res., 50 (1999), 493.
doi: 10.1007/s001860050083. |
[14] |
A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility,, IEEE Trans. Autom. Control, 46 (2001), 563.
doi: 10.1109/9.917658. |
[15] |
B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems,, Kluwer Academic/Plenum Publishers, (2003).
doi: 10.1007/978-1-4615-0095-7. |
[16] |
B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs,, SIAM J. Control Optim., 40 (2002), 1765.
doi: 10.1137/S0363012900376013. |
[17] |
L. Pan and J. Yong, A differential game with multi-level of hierarchy,, J. Math. Anal. Appl., 161 (1991), 522.
doi: 10.1016/0022-247X(91)90348-4. |
[18] |
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Syst. Control Lett., 14 (1990), 55.
doi: 10.1016/0167-6911(90)90082-6. |
[19] |
S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.
doi: 10.1137/0328054. |
[20] |
S. Peng, Backward stochastic differential equations and applications to optimal control,, Appl. Math. Optim., 27 (1993), 125.
doi: 10.1007/BF01195978. |
[21] |
G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information,, IEEE Trans. Autom. Control, 54 (2009), 1230.
doi: 10.1109/TAC.2009.2019794. |
[22] |
G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications,, IEEE Trans. Autom. Control, 55 (2010), 1742.
doi: 10.1109/TAC.2010.2048052. |
[23] |
G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications,, Automatica, 48 (2012), 342.
doi: 10.1016/j.automatica.2011.11.010. |
[24] |
Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems,, Syst. Sci. Math. Sci., 11 (1998), 249.
|
[25] |
W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system,, Journal of the Australian Math. Society B, 37 (1995), 172.
doi: 10.1017/S0334270000007645. |
[26] |
D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games,, Springer Series in Operations Research and Financial Engineering. Springer, (2006).
|
[27] |
J. Yong, A leader-follower stochastic linear quadratic differential game,, SIAM J. Control Optim., 41 (2002), 1015.
doi: 10.1137/S0363012901391925. |
show all references
References:
[1] |
T. T. K. An and B. Øksendal, Maximum principle for stochastic differential games with partial information,, Journal of Optimization Theory and Applications, 139 (2008), 463.
doi: 10.1007/s10957-008-9398-y. |
[2] |
T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,, Mathematics in Science and Engineering, (1982).
|
[3] |
A. Bensoussan, Lectures on Stochastic Control, in Nonlinear Filtering and Stochastic Control,, ser. Lecture Notes in Mathematics, (1982).
|
[4] |
A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.
doi: 10.1137/S0363012992240722. |
[5] |
A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves,, Math. Finance, 10 (2000), 141.
doi: 10.1111/1467-9965.00086. |
[6] |
M. H. A. Davis and A. Norman, Portfolio selection with transaction costs,, Math. Oper. Res., 15 (1990), 676.
doi: 10.1287/moor.15.4.676. |
[7] |
D. Duffie and L. Epstein, Stochastic differential utility,, Econometrica, 60 (1992), 353.
doi: 10.2307/2951600. |
[8] |
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Math. Finance, 7 (1997), 1.
doi: 10.1111/1467-9965.00022. |
[9] |
S. Hamadéne, Nonzero-sum linear-quadratic stochastic differential games and backward-forward equations,, Stochastic Anal. Appl., 17 (1999), 117.
doi: 10.1080/07362999908809591. |
[10] |
E. C. M., Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications,, J. Math. Anal. Appl., 386 (2012), 412.
doi: 10.1016/j.jmaa.2011.08.009. |
[11] |
R. Isaacs, Differential Games,, Parts 1-4. The RAND Corporation, (): 1. Google Scholar |
[12] |
M. Jeanblanc-Pique, Impulse control method and exchange rate,, Math. Finance, 3 (1993), 161.
doi: 10.1111/j.1467-9965.1993.tb00085.x. |
[13] |
R. Korn, Some appliations of impulse control in mathematical finance,, Math. Meth. Oper. Res., 50 (1999), 493.
doi: 10.1007/s001860050083. |
[14] |
A. E. B. Lim and X. Zhou, Risk-sensitive control with HARA utility,, IEEE Trans. Autom. Control, 46 (2001), 563.
doi: 10.1109/9.917658. |
[15] |
B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems,, Kluwer Academic/Plenum Publishers, (2003).
doi: 10.1007/978-1-4615-0095-7. |
[16] |
B. Øksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs,, SIAM J. Control Optim., 40 (2002), 1765.
doi: 10.1137/S0363012900376013. |
[17] |
L. Pan and J. Yong, A differential game with multi-level of hierarchy,, J. Math. Anal. Appl., 161 (1991), 522.
doi: 10.1016/0022-247X(91)90348-4. |
[18] |
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Syst. Control Lett., 14 (1990), 55.
doi: 10.1016/0167-6911(90)90082-6. |
[19] |
S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.
doi: 10.1137/0328054. |
[20] |
S. Peng, Backward stochastic differential equations and applications to optimal control,, Appl. Math. Optim., 27 (1993), 125.
doi: 10.1007/BF01195978. |
[21] |
G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information,, IEEE Trans. Autom. Control, 54 (2009), 1230.
doi: 10.1109/TAC.2009.2019794. |
[22] |
G. Wang and Z. Yu, A Pontryagin's maximum principle for nonzero-sum differential games of BSDEs with applications,, IEEE Trans. Autom. Control, 55 (2010), 1742.
doi: 10.1109/TAC.2010.2048052. |
[23] |
G. Wang and Z. Yu, A partial information nonzero-sum differential game of backward stochastic diffrential equations with applications,, Automatica, 48 (2012), 342.
doi: 10.1016/j.automatica.2011.11.010. |
[24] |
Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems,, Syst. Sci. Math. Sci., 11 (1998), 249.
|
[25] |
W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system,, Journal of the Australian Math. Society B, 37 (1995), 172.
doi: 10.1017/S0334270000007645. |
[26] |
D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games,, Springer Series in Operations Research and Financial Engineering. Springer, (2006).
|
[27] |
J. Yong, A leader-follower stochastic linear quadratic differential game,, SIAM J. Control Optim., 41 (2002), 1015.
doi: 10.1137/S0363012901391925. |
[1] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[2] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[3] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[4] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[5] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[6] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[7] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[8] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[9] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[10] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[11] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[12] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[13] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[14] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[15] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[16] |
Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[17] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[18] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[19] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[20] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]