\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Second order sufficient optimality conditions for hybrid control problems with state jump

Abstract Related Papers Cited by
  • In this paper, an optimal control problem for a class of hybrid systems is considered. By introducing a new time variable and transforming the hybrid optimal control problem into an equivalent problem, second order sufficient optimality conditions for this hybrid problem are derived. It is shown that sufficient optimality conditions can be verified by checking the Legendre-Clebsch condition and solving some Riccati equations with certain boundary and jump conditions. An example is given to show the effectiveness of the main results.
    Mathematics Subject Classification: Primary: 93C30, 49K15; Secondary: 49J15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. A. Attia, V. Azhmyakov and J. Raisch, On an optimization problem for a class of impulsive hybrid systems, Discrete Event Dynamic Systems, 20 (2010), 215-231.doi: 10.1007/s10626-009-0068-5.

    [2]

    D. Augustin and H. Maurer, Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems, Control and Cybernetics, 29 (2000), 11-31.

    [3]

    A. S. Bortakovskii, Sufficient optimality conditions for continuous-discrete systems with multiple instantaneous switchings of the discrete part, Journal of Computer and Systems Sciences International, 51 (2012), 183-213.doi: 10.1134/S1064230712020049.

    [4]

    A. V. Dmitruk and A. M. Kaganovich, The hybrid maximum principle is a consequence of Pontryagin maximum principle, Systems $&$ Control Letters, 57 (2008), 964-970.doi: 10.1016/j.sysconle.2008.05.006.

    [5]

    M. Egerstedt, Y. Wardi and H. Axelsson, Transition-time optimization for switched-mode dynamical systems, IEEE Transactions on Automatic Control, 51 (2006), 110-115.doi: 10.1109/TAC.2005.861711.

    [6]

    M. Garavello and B. Piccoli, Hybrid necessary principle, SIAM Journal on Control and Optimization, 43 (2005), 1867-1887.doi: 10.1137/S0363012903416219.

    [7]

    C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem, Journal of Industrial and Management Optimization, 8 (2012), 591-609.doi: 10.3934/jimo.2012.8.591.

    [8]

    M. Kamgarpour and C. Tomlin, On optimal control of non-autonomousswitched systems with a fixed mode sequence, Automatica, 48 (2012), 1177-1181.doi: 10.1016/j.automatica.2012.03.019.

    [9]

    R. Li, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.doi: 10.1016/j.mcm.2005.08.012.

    [10]

    Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems, 18 (2011), 59-76.

    [11]

    C. Y. Liu, Z. H. Guan, E. M. Feng and H. C. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch fermentation, Journal of Industrial and Management Optimization, 5 (2009), 835-850.

    [12]

    R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257.doi: 10.1016/j.automatica.2009.05.029.

    [13]

    S. F. Maharramov, Necessary optimality conditions for switching control problems, Journal of Industrial and Management Optimization, 6 (2010), 47-55.doi: 10.3934/jimo.2010.6.47.

    [14]

    S. F. Maharramov, Optimality condition of a nonsmooth switching control system, Automatic Control and Computer Sciences, 42 (2008), 94-101.doi: 10.3103/S0146411608020077.

    [15]

    K. Malanowski, H. Maurer and S. Pickenhain, Second-order sufficient conditions for state-constrained optimal control problems, Journal of Optimization Theory and Applications, 123 (2004), 595-617.doi: 10.1007/s10957-004-5725-0.

    [16]

    H. Maurer, First and second order sufficient optimality conditions in mathematical programming and optimal control, Mathematical Programming Study, 14 (1981), 163-177.

    [17]

    H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach, SIAM Journal on Control and Optimization, 41 (2002), 380-403.doi: 10.1137/S0363012900377419.

    [18]

    H. Maurer and S. Pickenhain, Second-order sufficient conditions for control problems with mixed control-state constrains, Journal of Optimization Theory and Applications, 86 (1995), 649-667.doi: 10.1007/BF02192163.

    [19]

    H. J. Oberle and R. Rosendahl, Numerical computation of a singular-state subarc in an economic optimal control model, Optimal Control Applications and Methods, 27 (2006), 211-235.doi: 10.1002/oca.775.

    [20]

    N. P. Osmolovskii and H. Maurer, Second-order sufficient optimality conditions for a control problem with continuous and bang-bang control components: Riccati approach, in IFIP Conference on System Modeling and optimization, 312 (2009), 411-429.doi: 10.1007/978-3-642-04802-9_24.

    [21]

    R. Rosendahl, Sufficient Optimality Conditions for Nonsmooth Optimal Control Problems, Ph.D thesis, Informatik und Naturwissenschaften der Universit$\ddota$t Hamburg in Hamburg, 2009.

    [22]

    M. Rungger and O. Stursberg, A numerical method for hybrid optimal control based on dynamic programming, Nonlinear Analysis: Hybrid Systems, 5 (2011), 254-274.doi: 10.1016/j.nahs.2010.09.002.

    [23]

    M. S. Shaikh and P. E. Caines, On the hybird optimal control problem: Theory and algorithms, IEEE Transactions on Automatic Control, 52 (2007), 1587-1603.doi: 10.1109/TAC.2007.904451.

    [24]

    H. J. Sussman, A maximum principle for hybrid optimization, in Proceedings of IEEE Conference on Decision and Control, (1999), 425-430.

    [25]

    X. P. Xu and J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.doi: 10.1109/TAC.2003.821417.

    [26]

    V. Zeidan, The riccati equation for optimal control problems with mixed state-control constraints: necessary and sufficiency, SIAM Journal on Control and Optimization, 32 (1994), 1297-1321.doi: 10.1137/S0363012992233640.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return