April  2015, 11(2): 345-364. doi: 10.3934/jimo.2015.11.345

A new auxiliary function method for systems of nonlinear equations

1. 

School of Mathematics, Chongqing Normal University, Chongqing 401331, China, China, China

2. 

Department of Mathematics, Shanghai University, Shanghai 200444

Received  November 2013 Revised  May 2014 Published  September 2014

In this paper, we present a new global optimization method to solve nonlinear systems of equations. We reformulate given system of nonlinear equations as a global optimization problem and then give a new auxiliary function method to solve the reformulated global optimization problem. The new auxiliary function proposed in this paper can be a filled function, a quasi-filled function or a strict filled function with appropriately chosen parameters. Several numerical examples are presented to illustrate the efficiency of the present approach.
Citation: Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345
References:
[1]

S. C. Billups and L. T. Watson, A probability-one homotopy algorithm for nonsmooth equations and mixed complementarity problems,, SIAM Journal on Optimization, 12 (2002), 606.  doi: 10.1137/S105262340037758X.  Google Scholar

[2]

X. Chen, L. Qi and Y. F. Yang, Lagrangian globalization methods for nonlinear complementarity problem,, Journal of Optimization Theory and Applications, 112 (2002), 77.  doi: 10.1023/A:1013092412197.  Google Scholar

[3]

B. Cetin, J. Barhen and J. Burdick, Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization,, J. Optim. Theory Appl., 77 (1993), 97.  doi: 10.1007/BF00940781.  Google Scholar

[4]

A. R. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods,, SIAM, (2000).  doi: 10.1137/1.9780898719857.  Google Scholar

[5]

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,, SIAM, (1996).  doi: 10.1137/1.9781611971200.  Google Scholar

[6]

C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, Handbook of Test Problems in Local and Global Optimization,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-1-4757-3040-1.  Google Scholar

[7]

R. Ge, A filled function method for finding a global minimizer of a function of several variables,, Mathematical Programming, 46 (1990), 191.  doi: 10.1007/BF01585737.  Google Scholar

[8]

R. P. Ge and Y. Qin, A class of filled functions for finding global minimizers of a function of several variables,, Journal of Optimization Theory and Applications, 54 (1987), 241.  doi: 10.1007/BF00939433.  Google Scholar

[9]

C. Kanzow, Global optimization techniques for mixed complementarity problems,, Journal of Global Optimization, 16 (2000), 1.  doi: 10.1023/A:1008331803982.  Google Scholar

[10]

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[11]

J. Kostrowicki and L. Piela, Diffusion equation method of global minimization: Performance for standard test functions,, J. Optim. Theory Appl., 69 (1991), 269.  doi: 10.1007/BF00940643.  Google Scholar

[12]

X. Liu, A computable filled function used for global optimization,, Appllied Mathematica and Computation, 126 (2002), 271.  doi: 10.1016/S0096-3003(00)00157-0.  Google Scholar

[13]

X. Liu, A new filled function applied to global optimization,, Computers and Operations Research, 31 (2004), 61.  doi: 10.1016/S0305-0548(02)00154-5.  Google Scholar

[14]

J. More, G. Burton and K. Hillstrom, User guide for MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois,, 1980., ().   Google Scholar

[15]

J. L. Nazareth and L. Qi, Globalization of Newton's methods for solving nonlinear equations,, Numerical linear algebra with applications, 3 (1996), 239.   Google Scholar

[16]

H. Sellami and S. M. Robinson, Implementation of a continuation method for normal maps,, Mathematical Programming, 76 (1997), 563.  doi: 10.1007/BF02614398.  Google Scholar

[17]

X. J. Tong, L. Qi and Y. F. Yang, The Lagrangian globalization method for nonsmooth constrained equations,, Computational Optimization and Applications, 33 (2006), 89.  doi: 10.1007/s10589-005-5960-9.  Google Scholar

[18]

Z. Y. Wu, M. Mammadov, F. S. Bai and Y. J. Yang, A filled function method for nonlinear equations,, Applied Mathematics and Computation, 189 (2007), 1196.  doi: 10.1016/j.amc.2006.11.183.  Google Scholar

[19]

Z. Xu, H. X. Huang, P. M. Pardalos and C. X. Xu, Filled functions for unconstrained global optimization,, Journal of Global Optimization, 20 (2001), 49.  doi: 10.1023/A:1011207512894.  Google Scholar

[20]

W. X. Zhu, Globally concavizied filled function method for the box constrained global minimization problem,, Optimization Methods and Software, 21 (2006), 653.  doi: 10.1080/10556780600628188.  Google Scholar

show all references

References:
[1]

S. C. Billups and L. T. Watson, A probability-one homotopy algorithm for nonsmooth equations and mixed complementarity problems,, SIAM Journal on Optimization, 12 (2002), 606.  doi: 10.1137/S105262340037758X.  Google Scholar

[2]

X. Chen, L. Qi and Y. F. Yang, Lagrangian globalization methods for nonlinear complementarity problem,, Journal of Optimization Theory and Applications, 112 (2002), 77.  doi: 10.1023/A:1013092412197.  Google Scholar

[3]

B. Cetin, J. Barhen and J. Burdick, Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization,, J. Optim. Theory Appl., 77 (1993), 97.  doi: 10.1007/BF00940781.  Google Scholar

[4]

A. R. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods,, SIAM, (2000).  doi: 10.1137/1.9780898719857.  Google Scholar

[5]

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,, SIAM, (1996).  doi: 10.1137/1.9781611971200.  Google Scholar

[6]

C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, Handbook of Test Problems in Local and Global Optimization,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-1-4757-3040-1.  Google Scholar

[7]

R. Ge, A filled function method for finding a global minimizer of a function of several variables,, Mathematical Programming, 46 (1990), 191.  doi: 10.1007/BF01585737.  Google Scholar

[8]

R. P. Ge and Y. Qin, A class of filled functions for finding global minimizers of a function of several variables,, Journal of Optimization Theory and Applications, 54 (1987), 241.  doi: 10.1007/BF00939433.  Google Scholar

[9]

C. Kanzow, Global optimization techniques for mixed complementarity problems,, Journal of Global Optimization, 16 (2000), 1.  doi: 10.1023/A:1008331803982.  Google Scholar

[10]

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,, SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[11]

J. Kostrowicki and L. Piela, Diffusion equation method of global minimization: Performance for standard test functions,, J. Optim. Theory Appl., 69 (1991), 269.  doi: 10.1007/BF00940643.  Google Scholar

[12]

X. Liu, A computable filled function used for global optimization,, Appllied Mathematica and Computation, 126 (2002), 271.  doi: 10.1016/S0096-3003(00)00157-0.  Google Scholar

[13]

X. Liu, A new filled function applied to global optimization,, Computers and Operations Research, 31 (2004), 61.  doi: 10.1016/S0305-0548(02)00154-5.  Google Scholar

[14]

J. More, G. Burton and K. Hillstrom, User guide for MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois,, 1980., ().   Google Scholar

[15]

J. L. Nazareth and L. Qi, Globalization of Newton's methods for solving nonlinear equations,, Numerical linear algebra with applications, 3 (1996), 239.   Google Scholar

[16]

H. Sellami and S. M. Robinson, Implementation of a continuation method for normal maps,, Mathematical Programming, 76 (1997), 563.  doi: 10.1007/BF02614398.  Google Scholar

[17]

X. J. Tong, L. Qi and Y. F. Yang, The Lagrangian globalization method for nonsmooth constrained equations,, Computational Optimization and Applications, 33 (2006), 89.  doi: 10.1007/s10589-005-5960-9.  Google Scholar

[18]

Z. Y. Wu, M. Mammadov, F. S. Bai and Y. J. Yang, A filled function method for nonlinear equations,, Applied Mathematics and Computation, 189 (2007), 1196.  doi: 10.1016/j.amc.2006.11.183.  Google Scholar

[19]

Z. Xu, H. X. Huang, P. M. Pardalos and C. X. Xu, Filled functions for unconstrained global optimization,, Journal of Global Optimization, 20 (2001), 49.  doi: 10.1023/A:1011207512894.  Google Scholar

[20]

W. X. Zhu, Globally concavizied filled function method for the box constrained global minimization problem,, Optimization Methods and Software, 21 (2006), 653.  doi: 10.1080/10556780600628188.  Google Scholar

[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[4]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[5]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[6]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[7]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[8]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[15]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[16]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[17]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[18]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[19]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[20]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]