April  2015, 11(2): 365-380. doi: 10.3934/jimo.2015.11.365

Credibility models with dependence structure over risks and time horizon

1. 

Department of Mathematics, Shanghai Maritime University, Shanghai, China

2. 

Center of International Finance and Risk Management, Department of Statistics and Actuarial Science, East China Normal University, Shanghai, China

Received  November 2012 Revised  March 2014 Published  September 2014

In this paper, the Bühlmann and Bühlmann-Straub's credibility models with a type of dependence structures over risks and over time are discussed. The inhomogeneous and homogeneous credibility estimators of risk premium were derived. The inhomogeneous credibility estimators for the existing credibility models with common effects are extended to slightly more general versions. The results obtained shake the classical meaning of the term ``credibility premiums''.
Citation: Weizhong Huang, Xianyi Wu. Credibility models with dependence structure over risks and time horizon. Journal of Industrial & Management Optimization, 2015, 11 (2) : 365-380. doi: 10.3934/jimo.2015.11.365
References:
[1]

C. Bolancé, M. Guillén, M. Denuit and J. Pinquet, Bonus-malus scales in segmented tariffs with stochastic migration between segments,, Insurance: Mathematics and Economics, 33 (2003), 273.  doi: 10.1016/S0167-6687(03)00139-2.  Google Scholar

[2]

H. Bühlmann, Experience rating and credibility,, Astin Bulletin, 4 (1967), 199.   Google Scholar

[3]

H. Bühlmann and E. Straub, Glaubwüdigkeit für Schadensäze,, Bulletin of the Swiss Association of Actuaries, 70 (1970), 111.   Google Scholar

[4]

H. Bühlmann and A. Gisler, A Course in Credibility Theory and its Applications,, Springer, (2005).   Google Scholar

[5]

D. R. Dannenburg, Crossed classification credibility models,, Transactions of the 25th International Congress of Actuaries, 4 (1995), 1.   Google Scholar

[6]

J. Dhaene, M. Denuit, M. J. Goovaerts, R. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory,, Insurance: Mathematics and Economics, 31 (2002), 3.  doi: 10.1016/S0167-6687(02)00134-8.  Google Scholar

[7]

J. Dhaene, M. Denuit, M. J. Goovaerts, R. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Applications,, Insurance: Mathematics and Economics, 31 (2002), 133.  doi: 10.1016/S0167-6687(02)00135-X.  Google Scholar

[8]

J. Dhaene and M. J. Goovaerts, Dependency of risks and stop-loss order,, Astin Bulletin, 26 (1996), 201.   Google Scholar

[9]

E. W. Frees, V. R. Young and Y. Luo, A Longitudinal Date Analysis Interpretation of Credibility models,, Insurance: Mathematics and Economics, 24 (1999), 229.  doi: 10.1016/S0167-6687(98)00055-9.  Google Scholar

[10]

E. W. Frees, V. R. Young and Y. Luo, Case studies using panel data models,, North American Actuarial Journal, 5 (2001), 24.  doi: 10.1080/10920277.2001.10596010.  Google Scholar

[11]

C. A. Hachemeister, Credibility for regression models with application to trend,, In Credibility, (1975), 129.   Google Scholar

[12]

W. S. Jewell, The use of collateral data in credibility theory: A hierarchical model,, Giorndle dell'lstituto Italianodegdi Attuari, 38 (1975), 1.   Google Scholar

[13]

T. Y. Lu and Y. Zhang, Generalized correlation order and stop-loss order,, Insurance: mathematics and economics, 35 (2004), 69.  doi: 10.1016/j.insmatheco.2004.04.003.  Google Scholar

[14]

A. Müller, Stop-loss order for portfolios of dependent risks,, Insurance: Mathematics and Economics, 21 (1997), 219.  doi: 10.1016/S0167-6687(97)00032-2.  Google Scholar

[15]

M. Pan, R. Wang and X. Wu, On the consistency of credibility premiums regarding Esscher principle,, Insurance: Mathematics and Economics, 42 (2008), 119.  doi: 10.1016/j.insmatheco.2007.01.009.  Google Scholar

[16]

O. Purcaru and M. Denuit, On the dependence induced by frequency credibility models,, Belgian Actuarial Bulletin, 2 (2002), 73.   Google Scholar

[17]

O. Purcaru and M. Denuit, Dependence in dynamic claim frequency credibility models,, Astin Bulletin, 33 (2003), 23.  doi: 10.2143/AST.33.1.1037.  Google Scholar

[18]

S. S. Wang, V. R. Young and H. H. Panjer, Axiomatic characterization of insurance prices,, Insurance: Mathematics and Economics, 21 (1997), 173.  doi: 10.1016/S0167-6687(97)00031-0.  Google Scholar

[19]

L. Wen, X. Wu and X. Zhao, The credibility premiums under generalized weighted loss functions,, Journal of Industrial and Management Optimization, 5 (2009), 893.  doi: 10.3934/jimo.2009.5.893.  Google Scholar

[20]

L. Wen, X. Wu and X. Zhou, The credibility premiums for models with dependence induced by common effects,, Insurance: Mathematics and Economics, 44 (2009), 19.  doi: 10.1016/j.insmatheco.2008.09.005.  Google Scholar

[21]

X. Wu and X. Zhou, A new characterization of distortion premiums via countable additivity for comonotonic risks,, Insurance: Mathematics and Economics, 38 (2006), 324.  doi: 10.1016/j.insmatheco.2005.09.002.  Google Scholar

[22]

K. L. Yeo and E. A. Valdez, Claim dependence with common effects in credibility models,, Insurance: Mathematics and Economics, 38 (2006), 609.  doi: 10.1016/j.insmatheco.2005.12.006.  Google Scholar

show all references

References:
[1]

C. Bolancé, M. Guillén, M. Denuit and J. Pinquet, Bonus-malus scales in segmented tariffs with stochastic migration between segments,, Insurance: Mathematics and Economics, 33 (2003), 273.  doi: 10.1016/S0167-6687(03)00139-2.  Google Scholar

[2]

H. Bühlmann, Experience rating and credibility,, Astin Bulletin, 4 (1967), 199.   Google Scholar

[3]

H. Bühlmann and E. Straub, Glaubwüdigkeit für Schadensäze,, Bulletin of the Swiss Association of Actuaries, 70 (1970), 111.   Google Scholar

[4]

H. Bühlmann and A. Gisler, A Course in Credibility Theory and its Applications,, Springer, (2005).   Google Scholar

[5]

D. R. Dannenburg, Crossed classification credibility models,, Transactions of the 25th International Congress of Actuaries, 4 (1995), 1.   Google Scholar

[6]

J. Dhaene, M. Denuit, M. J. Goovaerts, R. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory,, Insurance: Mathematics and Economics, 31 (2002), 3.  doi: 10.1016/S0167-6687(02)00134-8.  Google Scholar

[7]

J. Dhaene, M. Denuit, M. J. Goovaerts, R. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Applications,, Insurance: Mathematics and Economics, 31 (2002), 133.  doi: 10.1016/S0167-6687(02)00135-X.  Google Scholar

[8]

J. Dhaene and M. J. Goovaerts, Dependency of risks and stop-loss order,, Astin Bulletin, 26 (1996), 201.   Google Scholar

[9]

E. W. Frees, V. R. Young and Y. Luo, A Longitudinal Date Analysis Interpretation of Credibility models,, Insurance: Mathematics and Economics, 24 (1999), 229.  doi: 10.1016/S0167-6687(98)00055-9.  Google Scholar

[10]

E. W. Frees, V. R. Young and Y. Luo, Case studies using panel data models,, North American Actuarial Journal, 5 (2001), 24.  doi: 10.1080/10920277.2001.10596010.  Google Scholar

[11]

C. A. Hachemeister, Credibility for regression models with application to trend,, In Credibility, (1975), 129.   Google Scholar

[12]

W. S. Jewell, The use of collateral data in credibility theory: A hierarchical model,, Giorndle dell'lstituto Italianodegdi Attuari, 38 (1975), 1.   Google Scholar

[13]

T. Y. Lu and Y. Zhang, Generalized correlation order and stop-loss order,, Insurance: mathematics and economics, 35 (2004), 69.  doi: 10.1016/j.insmatheco.2004.04.003.  Google Scholar

[14]

A. Müller, Stop-loss order for portfolios of dependent risks,, Insurance: Mathematics and Economics, 21 (1997), 219.  doi: 10.1016/S0167-6687(97)00032-2.  Google Scholar

[15]

M. Pan, R. Wang and X. Wu, On the consistency of credibility premiums regarding Esscher principle,, Insurance: Mathematics and Economics, 42 (2008), 119.  doi: 10.1016/j.insmatheco.2007.01.009.  Google Scholar

[16]

O. Purcaru and M. Denuit, On the dependence induced by frequency credibility models,, Belgian Actuarial Bulletin, 2 (2002), 73.   Google Scholar

[17]

O. Purcaru and M. Denuit, Dependence in dynamic claim frequency credibility models,, Astin Bulletin, 33 (2003), 23.  doi: 10.2143/AST.33.1.1037.  Google Scholar

[18]

S. S. Wang, V. R. Young and H. H. Panjer, Axiomatic characterization of insurance prices,, Insurance: Mathematics and Economics, 21 (1997), 173.  doi: 10.1016/S0167-6687(97)00031-0.  Google Scholar

[19]

L. Wen, X. Wu and X. Zhao, The credibility premiums under generalized weighted loss functions,, Journal of Industrial and Management Optimization, 5 (2009), 893.  doi: 10.3934/jimo.2009.5.893.  Google Scholar

[20]

L. Wen, X. Wu and X. Zhou, The credibility premiums for models with dependence induced by common effects,, Insurance: Mathematics and Economics, 44 (2009), 19.  doi: 10.1016/j.insmatheco.2008.09.005.  Google Scholar

[21]

X. Wu and X. Zhou, A new characterization of distortion premiums via countable additivity for comonotonic risks,, Insurance: Mathematics and Economics, 38 (2006), 324.  doi: 10.1016/j.insmatheco.2005.09.002.  Google Scholar

[22]

K. L. Yeo and E. A. Valdez, Claim dependence with common effects in credibility models,, Insurance: Mathematics and Economics, 38 (2006), 609.  doi: 10.1016/j.insmatheco.2005.12.006.  Google Scholar

[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[3]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[4]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[5]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[6]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[7]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[8]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[9]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[10]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[11]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[12]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[13]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[14]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[15]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[16]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[17]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[18]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[19]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[20]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]