• Previous Article
    On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality
  • JIMO Home
  • This Issue
  • Next Article
    Optimal selection of cleaner products in a green supply chain with risk aversion
April  2015, 11(2): 529-547. doi: 10.3934/jimo.2015.11.529

A new method for strong-weak linear bilevel programming problem

1. 

College of Mathematics and Physics, Huanggang Normal University, Huanggang 438000, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072

3. 

School of Science, Wuhan University of Science and Technology, Wuhan 430081, China

4. 

School of Economics and Management, China University of Geosciences, Wuhan 430074, China

Received  October 2012 Revised  April 2014 Published  September 2014

We first propose an exact penalty method to solve strong-weak linear bilevel programming problem (for short, SWLBP) for every fixed cooperation degree from the follower. Then, we prove that the solution of penalized problem is also that of the original problem under some conditions. Furthermore, we give some properties of the optimal value function (as a function of the follower's cooperation degree) of SWLBP. Finally, we develop a method to acquire the critical points of the optimal value function without enumerating all values of the cooperation degree from the follower, and thus this function is also achieved. Numerical results show that the proposed methods are feasible.
Citation: Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529
References:
[1]

A. Aboussoror and P. Loridan, Strong-weak Stackelberg problems in finite dimentional spaces,, Serdica Mathematical Journal, 21 (1995), 151.   Google Scholar

[2]

A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: Existence of solutions via a penalty method,, Journal of Mathematical Analysis and Applications, 304 (2005), 399.  doi: 10.1016/j.jmaa.2004.09.033.  Google Scholar

[3]

A. Aboussoror, S. Adly and V. Jalby, Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems,, Journal of Industrial and Management Optimization, 7 (2011), 559.  doi: 10.3934/jimo.2011.7.559.  Google Scholar

[4]

G. Anandalingam and D. J. White, A solution for the linear static Stackelberg problem using penalty function,, IEEE Transactions Automatic Control, 35 (1990), 1170.  doi: 10.1109/9.58565.  Google Scholar

[5]

J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications,, Kluwer Academic, (1998).  doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[6]

M. Campelo, S. Dantas and S. Scheimberg, A note on a penalty function approach for solving bi-level linear programs,, Journal of Global Optimization, 16 (2000), 245.  doi: 10.1023/A:1008308218364.  Google Scholar

[7]

D. Cao and L. C. Leung, A partial cooperation model for non-unique linear two-level decision problems,, European Journal of Operational Research, 140 (2002), 134.  doi: 10.1016/S0377-2217(01)00225-9.  Google Scholar

[8]

B. Colson, P. Marcotte and G. Savard, Bilevel programming: A survey,, 4OR: Q. J. Oper. Res., 3 (2005), 87.  doi: 10.1007/s10288-005-0071-0.  Google Scholar

[9]

B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization,, Ann. Oper. Res., 153 (2007), 235.  doi: 10.1007/s10479-007-0176-2.  Google Scholar

[10]

S. Dassanayaka, Methods of Variational Analysis in Pessimistic Bilevel Programming,, PhD Thesis, (2010).   Google Scholar

[11]

S. Dempe, Foundations of Bilevel Programming,, Nonconvex Optimization and its Applications Series, (2002).   Google Scholar

[12]

S. Dempe, Annottated bibliography on bilevel programming and mathematical problems with equilibrium constraints,, Optimization, 52 (2003), 333.  doi: 10.1080/0233193031000149894.  Google Scholar

[13]

S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions,, Mathematical Programming, 138 (2013), 447.  doi: 10.1007/s10107-011-0508-5.  Google Scholar

[14]

S. Dempe, B. S. Mordukhovich and A. B. Zemkoho, Necessary optimality conditions in pessimistic bilevel programming,, Optimization, 63 (2014), 505.  doi: 10.1080/02331934.2012.696641.  Google Scholar

[15]

J. L. Goffin, On convergence rates of subgradient optimization methods,, Mathematical Programming, 13 (1977), 329.  doi: 10.1007/BF01584346.  Google Scholar

[16]

P. Hansen, B. Jaumard and G. Savard, New branch-and-bound rules for linear bilevel programming,, SIAM J. on Scientific and Statistical Computing, 13 (1992), 1194.  doi: 10.1137/0913069.  Google Scholar

[17]

P. Loridan and J. Morgan, Weak via strong Stackelberg problem: New results,, Journal of Global Optimization, 8 (1996), 263.  doi: 10.1007/BF00121269.  Google Scholar

[18]

L. Mallozzi and J. Morgan, Hierarchical systems with weighted reaction set,, Nonlinear Optimization and Applications, (1996), 271.   Google Scholar

[19]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970).   Google Scholar

[20]

K. Shimizu, Y. Ishizuka and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming,, Kluwer Academic, (1997).  doi: 10.1007/978-1-4615-6305-1.  Google Scholar

[21]

M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization,, Mathematical Programming, 103 (2005), 225.  doi: 10.1007/s10107-005-0581-8.  Google Scholar

[22]

L. N. Vicente and P. H. Calamai, Bilevel and multilevel programming: A bibliography review,, Journal of Global Optimization, 5 (1994), 291.  doi: 10.1007/BF01096458.  Google Scholar

[23]

G. Wang, Z. Wan and X. Wang, Bibliography on bilevel programming,, Advances in Mathematics(in Chinese), 36 (2007), 513.   Google Scholar

[24]

U. P. Wen and S. T. Hsu, Linear bilevel programming problems-a review,, Journal of Operational Research Society, 42 (1991), 125.   Google Scholar

[25]

D. J. White and G. Anandalingam, A penalty function approach for solving bi-level linear programs,, Journal of Global Optimization, 3 (1993), 397.  doi: 10.1007/BF01096412.  Google Scholar

[26]

W. Wiesemann, A. Tsoukalas, P. Kleniati and B. Rustem, Pessimistic bilevel optimisation,, SIAM Journal on Optimization, 23 (2013), 353.  doi: 10.1137/120864015.  Google Scholar

[27]

J. Ye and D. Zhu, New necessary optimality conditions for bilevel programs by combining the mpec and value function approaches,, SIAM Journal on Optimization, 20 (2010), 1885.  doi: 10.1137/080725088.  Google Scholar

show all references

References:
[1]

A. Aboussoror and P. Loridan, Strong-weak Stackelberg problems in finite dimentional spaces,, Serdica Mathematical Journal, 21 (1995), 151.   Google Scholar

[2]

A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: Existence of solutions via a penalty method,, Journal of Mathematical Analysis and Applications, 304 (2005), 399.  doi: 10.1016/j.jmaa.2004.09.033.  Google Scholar

[3]

A. Aboussoror, S. Adly and V. Jalby, Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems,, Journal of Industrial and Management Optimization, 7 (2011), 559.  doi: 10.3934/jimo.2011.7.559.  Google Scholar

[4]

G. Anandalingam and D. J. White, A solution for the linear static Stackelberg problem using penalty function,, IEEE Transactions Automatic Control, 35 (1990), 1170.  doi: 10.1109/9.58565.  Google Scholar

[5]

J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications,, Kluwer Academic, (1998).  doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[6]

M. Campelo, S. Dantas and S. Scheimberg, A note on a penalty function approach for solving bi-level linear programs,, Journal of Global Optimization, 16 (2000), 245.  doi: 10.1023/A:1008308218364.  Google Scholar

[7]

D. Cao and L. C. Leung, A partial cooperation model for non-unique linear two-level decision problems,, European Journal of Operational Research, 140 (2002), 134.  doi: 10.1016/S0377-2217(01)00225-9.  Google Scholar

[8]

B. Colson, P. Marcotte and G. Savard, Bilevel programming: A survey,, 4OR: Q. J. Oper. Res., 3 (2005), 87.  doi: 10.1007/s10288-005-0071-0.  Google Scholar

[9]

B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization,, Ann. Oper. Res., 153 (2007), 235.  doi: 10.1007/s10479-007-0176-2.  Google Scholar

[10]

S. Dassanayaka, Methods of Variational Analysis in Pessimistic Bilevel Programming,, PhD Thesis, (2010).   Google Scholar

[11]

S. Dempe, Foundations of Bilevel Programming,, Nonconvex Optimization and its Applications Series, (2002).   Google Scholar

[12]

S. Dempe, Annottated bibliography on bilevel programming and mathematical problems with equilibrium constraints,, Optimization, 52 (2003), 333.  doi: 10.1080/0233193031000149894.  Google Scholar

[13]

S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions,, Mathematical Programming, 138 (2013), 447.  doi: 10.1007/s10107-011-0508-5.  Google Scholar

[14]

S. Dempe, B. S. Mordukhovich and A. B. Zemkoho, Necessary optimality conditions in pessimistic bilevel programming,, Optimization, 63 (2014), 505.  doi: 10.1080/02331934.2012.696641.  Google Scholar

[15]

J. L. Goffin, On convergence rates of subgradient optimization methods,, Mathematical Programming, 13 (1977), 329.  doi: 10.1007/BF01584346.  Google Scholar

[16]

P. Hansen, B. Jaumard and G. Savard, New branch-and-bound rules for linear bilevel programming,, SIAM J. on Scientific and Statistical Computing, 13 (1992), 1194.  doi: 10.1137/0913069.  Google Scholar

[17]

P. Loridan and J. Morgan, Weak via strong Stackelberg problem: New results,, Journal of Global Optimization, 8 (1996), 263.  doi: 10.1007/BF00121269.  Google Scholar

[18]

L. Mallozzi and J. Morgan, Hierarchical systems with weighted reaction set,, Nonlinear Optimization and Applications, (1996), 271.   Google Scholar

[19]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970).   Google Scholar

[20]

K. Shimizu, Y. Ishizuka and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming,, Kluwer Academic, (1997).  doi: 10.1007/978-1-4615-6305-1.  Google Scholar

[21]

M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization,, Mathematical Programming, 103 (2005), 225.  doi: 10.1007/s10107-005-0581-8.  Google Scholar

[22]

L. N. Vicente and P. H. Calamai, Bilevel and multilevel programming: A bibliography review,, Journal of Global Optimization, 5 (1994), 291.  doi: 10.1007/BF01096458.  Google Scholar

[23]

G. Wang, Z. Wan and X. Wang, Bibliography on bilevel programming,, Advances in Mathematics(in Chinese), 36 (2007), 513.   Google Scholar

[24]

U. P. Wen and S. T. Hsu, Linear bilevel programming problems-a review,, Journal of Operational Research Society, 42 (1991), 125.   Google Scholar

[25]

D. J. White and G. Anandalingam, A penalty function approach for solving bi-level linear programs,, Journal of Global Optimization, 3 (1993), 397.  doi: 10.1007/BF01096412.  Google Scholar

[26]

W. Wiesemann, A. Tsoukalas, P. Kleniati and B. Rustem, Pessimistic bilevel optimisation,, SIAM Journal on Optimization, 23 (2013), 353.  doi: 10.1137/120864015.  Google Scholar

[27]

J. Ye and D. Zhu, New necessary optimality conditions for bilevel programs by combining the mpec and value function approaches,, SIAM Journal on Optimization, 20 (2010), 1885.  doi: 10.1137/080725088.  Google Scholar

[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[5]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[6]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[7]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[8]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[9]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[10]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[11]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[12]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[15]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[16]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[17]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[18]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[19]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[20]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]