-
Previous Article
Optimality conditions for strong vector equilibrium problems under a weak constraint qualification
- JIMO Home
- This Issue
-
Next Article
A new method for strong-weak linear bilevel programming problem
On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality
1. | College of Science, Chongqing JiaoTong University, Chongqing 400074, China |
2. | Department of Mathematics, Chongqing Normal University, Chongqing, 400047 |
3. | Department of Mathematics and Statistics, Curtin University, Perth, W.A. 6845 |
References:
[1] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984). Google Scholar |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhanser, (1990). Google Scholar |
[3] |
M. Ait and H. Riahi, Sensitivity analysis for abstract equilibrium problems,, J. Math. Anal. Appl, 306 (2005), 684.
doi: 10.1016/j.jmaa.2004.10.011. |
[4] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim, 29 (2008), 24.
doi: 10.1080/01630560701873068. |
[5] |
L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems,, Nonlinear Analysis, 75 (2012), 2293.
doi: 10.1016/j.na.2011.10.029. |
[6] |
M. Bianchi and R. Pini, A note on stability for parametric equilibrium problems,, Oper. Res. Lett., 31 (2003), 445.
doi: 10.1016/S0167-6377(03)00051-8. |
[7] |
M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria,, Optimization, 55 (2006), 221.
doi: 10.1080/02331930600662732. |
[8] |
H. Brezis and L. Nirenberg, Stampacchia, G.: A remark on Ky Fan's minimax principle,, Boll. Unione Mat. Ital., VI (1972), 129. Google Scholar |
[9] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis,, Springer, (2005). Google Scholar |
[10] |
Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.
doi: 10.1007/s10898-004-2692-9. |
[11] |
K. Fan, Extensions of two fixed point theorems of F.E. Browder,, Math. Z., 112 (1969), 234.
doi: 10.1007/BF01110225. |
[12] |
K. Fan, A minimax inequality and applications,, In Shihsha, (1972), 103. Google Scholar |
[13] |
F. Giannessi, Vector Variational Inequalities and Vector Equilibria,, Mathematical Theories. Kluwer, (2000).
doi: 10.1007/978-1-4613-0299-5. |
[14] |
F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models,, Nonconvex Optimization and Its Applications, 58 (2001), 187.
doi: 10.1007/0-306-48026-3_12. |
[15] |
X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.
doi: 10.1023/A:1026418122905. |
[16] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[17] |
X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.
doi: 10.1007/s10957-008-9429-8. |
[18] |
N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.
doi: 10.1016/j.mcm.2005.06.010. |
[19] |
K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.
doi: 10.1007/s10957-008-9386-2. |
[20] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[21] |
S. J. Li, X. B. Li, L. N. Wang and K. L. Teo, The Hölder continuity of solutions to generalized vectorequilibrium problems,, European J. Oper. Res., 199 (2009), 334.
doi: 10.1016/j.ejor.2008.12.024. |
[22] |
S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems,, European J. Oper. Res., 210 (2011), 148.
doi: 10.1016/j.ejor.2010.10.005. |
[23] |
X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541.
doi: 10.1007/s10898-010-9641-6. |
[24] |
S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan Inequality,, J. Optim. Theory Appl., 149 (2011), 540.
doi: 10.1007/s10957-011-9803-9. |
[25] |
X. B. Li, S. J. Li and C. R. Chen, Lipschitz Continuity of an approximate solution mapping to equilibrium problems,, Taiwan J. Math., 16 (2012), 1027. Google Scholar |
[26] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation,, I: Basic Theory, (2006). Google Scholar |
[27] |
Z. Y. Peng, Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems,, Abst. Appl. Anal., 2012 (2012).
doi: 10.1155/2012/236413. |
[28] |
N. D. Yen, Hölder continuity of solutions to parametric variational inequalities,, Appl. Math. Opim., 31 (1995), 245.
doi: 10.1007/BF01215992. |
show all references
References:
[1] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984). Google Scholar |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhanser, (1990). Google Scholar |
[3] |
M. Ait and H. Riahi, Sensitivity analysis for abstract equilibrium problems,, J. Math. Anal. Appl, 306 (2005), 684.
doi: 10.1016/j.jmaa.2004.10.011. |
[4] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim, 29 (2008), 24.
doi: 10.1080/01630560701873068. |
[5] |
L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems,, Nonlinear Analysis, 75 (2012), 2293.
doi: 10.1016/j.na.2011.10.029. |
[6] |
M. Bianchi and R. Pini, A note on stability for parametric equilibrium problems,, Oper. Res. Lett., 31 (2003), 445.
doi: 10.1016/S0167-6377(03)00051-8. |
[7] |
M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria,, Optimization, 55 (2006), 221.
doi: 10.1080/02331930600662732. |
[8] |
H. Brezis and L. Nirenberg, Stampacchia, G.: A remark on Ky Fan's minimax principle,, Boll. Unione Mat. Ital., VI (1972), 129. Google Scholar |
[9] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis,, Springer, (2005). Google Scholar |
[10] |
Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.
doi: 10.1007/s10898-004-2692-9. |
[11] |
K. Fan, Extensions of two fixed point theorems of F.E. Browder,, Math. Z., 112 (1969), 234.
doi: 10.1007/BF01110225. |
[12] |
K. Fan, A minimax inequality and applications,, In Shihsha, (1972), 103. Google Scholar |
[13] |
F. Giannessi, Vector Variational Inequalities and Vector Equilibria,, Mathematical Theories. Kluwer, (2000).
doi: 10.1007/978-1-4613-0299-5. |
[14] |
F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models,, Nonconvex Optimization and Its Applications, 58 (2001), 187.
doi: 10.1007/0-306-48026-3_12. |
[15] |
X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.
doi: 10.1023/A:1026418122905. |
[16] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[17] |
X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.
doi: 10.1007/s10957-008-9429-8. |
[18] |
N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.
doi: 10.1016/j.mcm.2005.06.010. |
[19] |
K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.
doi: 10.1007/s10957-008-9386-2. |
[20] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[21] |
S. J. Li, X. B. Li, L. N. Wang and K. L. Teo, The Hölder continuity of solutions to generalized vectorequilibrium problems,, European J. Oper. Res., 199 (2009), 334.
doi: 10.1016/j.ejor.2008.12.024. |
[22] |
S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems,, European J. Oper. Res., 210 (2011), 148.
doi: 10.1016/j.ejor.2010.10.005. |
[23] |
X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541.
doi: 10.1007/s10898-010-9641-6. |
[24] |
S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan Inequality,, J. Optim. Theory Appl., 149 (2011), 540.
doi: 10.1007/s10957-011-9803-9. |
[25] |
X. B. Li, S. J. Li and C. R. Chen, Lipschitz Continuity of an approximate solution mapping to equilibrium problems,, Taiwan J. Math., 16 (2012), 1027. Google Scholar |
[26] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation,, I: Basic Theory, (2006). Google Scholar |
[27] |
Z. Y. Peng, Hölder Continuity of Solutions to Parametric Generalized Vector Quasiequilibrium Problems,, Abst. Appl. Anal., 2012 (2012).
doi: 10.1155/2012/236413. |
[28] |
N. D. Yen, Hölder continuity of solutions to parametric variational inequalities,, Appl. Math. Opim., 31 (1995), 245.
doi: 10.1007/BF01215992. |
[1] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[2] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[3] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[4] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]