Advanced Search
Article Contents
Article Contents

Optimality conditions for strong vector equilibrium problems under a weak constraint qualification

Abstract Related Papers Cited by
  • The purpose of this paper is to present necessary and sufficient optimality conditions for a feasible solution to be weakly efficient or Henig weakly efficient solution of a nonconvex vector equilibrium problem with cone constraints. These theorems are based on the quasi-relative interior notion and a very recent separation theorem which involves this notion. Our results deal with some conditions where no previous results are applicable.
    Mathematics Subject Classification: Primary: 90C46; Secondary: 49K10.


    \begin{equation} \\ \end{equation}
  • [1]

    Q. H. Ansari, W. Oettli and D. Schläger, A generalization of vectorial equilibria, Math. Meth. Oper. Res., 46 (1997), 147-152.doi: 10.1007/BF01217687.


    M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl., 92 (1997), 527-542.doi: 10.1023/A:1022603406244.


    G. Bigi, A. Capătă and G. Kassay, Existence results for strong vector equilibrium problems and their applications, Optimization, 61 (2012), 567-583.doi: 10.1080/02331934.2010.528761.


    J. M. Borwein and R. Goebel, Notions of relative interior in Banach spaces, J. Math. Sci., 115 (2003), 2542-2553.doi: 10.1023/A:1022988116044.


    J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Prog., 57 (1992), 15-48.doi: 10.1007/BF01581072.


    R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming, SIAM J. Optim., 19 (2008), 217-233.doi: 10.1137/07068432X.


    A. Capătă, Families of Henig dilating cones and proper efficiency in vector equilibrium problems, Autom. Comp. Appl. Math., 19 (2010), 67-76.


    A. Capătă, Optimality conditions for vector equilibrium problems and their applications, J. Ind. Manag. Optim., 9 (2013), 659-669.doi: 10.3934/jimo.2013.9.659.


    G.-Y. Chen and S. H. Hou, Existence of solutions for vector variational inequalities, in F. Giannessi (ed.), Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, 38 (2000), 73-86.doi: 10.1007/978-1-4613-0299-5_5.


    B. D. Craven, Mathematical Programming and Control Theory, xi+163 pp., Chapman and Hall, London, 1978.


    P. Daniele, S. Giuffrè and A. Maugeri, Infinite dimensional duality and applications, Math. Ann., 339 (2007), 221-239.doi: 10.1007/s00208-007-0118-y.


    F. Flores-Bazán and G. Mastroeni, Strong duality in cone constrained nonconvex optimization, SIAM. J. Optim., 23 (2013), 153-169.doi: 10.1137/120861400.


    X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior, J. Math. Anal. Appl., 307 (2005), 12-31.doi: 10.1016/j.jmaa.2004.10.001.


    X. H. Gong, Symmetric strong vector quasi-equilibrium problems, Math. Methods Oper. Res., 65 (2007), 305-314.doi: 10.1007/s00186-006-0114-0.


    X. H. Gong, Optimality conditions for vector equilibrium problems, J. Math. Anal. Appl., 342 (2008), 1455-1466.doi: 10.1016/j.jmaa.2008.01.026.


    A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variatonal Methods in Partially Ordered Spaces, xiv+350 pp., Springer-Verlag, New York, 2003.


    T. X. D. Ha, Optimality conditions for various solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems, Nonlinear Anal., 75 (2012), 1305-1323.doi: 10.1016/j.na.2011.03.015.


    M. I. Henig, Proper efficiency with respect to cones, J. Optim. Theory Appl., 36 (1982), 387-407.doi: 10.1007/BF00934353.


    R. B. Holmes, Geometric Functional Analysis and its Applications, Springer-Verlag, Berlin, 1975.


    M. A. Limber and R. K. Goodrich, Quasi interiors, Lagrange multipliers and $L^p$ spectral estimation with lattice bounds, J. Optim. Theory Appl., 78 (1993), 143-161.doi: 10.1007/BF00940705.


    K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities, J. Optim. Theory Appl., 92 (1997), 117-125.doi: 10.1023/A:1022640130410.


    X. J. Long, Y. Q. Huang and Z. Y. Peng, Optimality conditions for the Henig efficient solution of vector equilibrium problems with constraints, Optim. Lett., 5 (2011), 717-728.doi: 10.1007/s11590-010-0241-7.


    B. C. Ma and X. H. Gong, Optimality conditions for vector equilibrium problems in normed spaces, Optimization, 60 (2011), 1441-1455.doi: 10.1080/02331931003657709.


    J. Morgan and M. Romaniello, Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities, J. Optim. Theory Appl., 130 (2006), 309-316.doi: 10.1007/s10957-006-9104-x.


    S. Paeck, Convexlike and concavelike conditions in alternative, minimax and minimization theorems, J. Optim. Theory Appl., 74 (1992), 317-332.doi: 10.1007/BF00940897.


    Q. Qiu, Optimality conditions of globally efficient solutions for vector equilibrium problems with generalized convexity, J. Ineq. Appl., (2009), Art. ID 898213, 13 pp.doi: 10.1155/2009/898213.


    Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints, J. Ind. Manag. Optim., 5 (2009), 783-790.doi: 10.3934/jimo.2009.5.783.


    R. T. Rockafellar, Conjugate Duality and Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 1974.


    X. M. Yang, D. Li and X. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions, J. Optim. Theory Appl., 110 (2001), 413-427.doi: 10.1023/A:1017535631418.


    C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.doi: 10.1142/9789812777096.

  • 加载中

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint