• Previous Article
    The set covering problem revisited: An empirical study of the value of dual information
  • JIMO Home
  • This Issue
  • Next Article
    On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality
April  2015, 11(2): 563-574. doi: 10.3934/jimo.2015.11.563

Optimality conditions for strong vector equilibrium problems under a weak constraint qualification

1. 

Technical University of Cluj-Napoca, Department of Mathematics, Str. G. Bariţiu 25, 400027, Cluj-Napoca

Received  October 2013 Revised  April 2014 Published  September 2014

The purpose of this paper is to present necessary and sufficient optimality conditions for a feasible solution to be weakly efficient or Henig weakly efficient solution of a nonconvex vector equilibrium problem with cone constraints. These theorems are based on the quasi-relative interior notion and a very recent separation theorem which involves this notion. Our results deal with some conditions where no previous results are applicable.
Citation: Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial & Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563
References:
[1]

Q. H. Ansari, W. Oettli and D. Schläger, A generalization of vectorial equilibria,, Math. Meth. Oper. Res., 46 (1997), 147.  doi: 10.1007/BF01217687.  Google Scholar

[2]

M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[3]

G. Bigi, A. Capătă and G. Kassay, Existence results for strong vector equilibrium problems and their applications,, Optimization, 61 (2012), 567.  doi: 10.1080/02331934.2010.528761.  Google Scholar

[4]

J. M. Borwein and R. Goebel, Notions of relative interior in Banach spaces,, J. Math. Sci., 115 (2003), 2542.  doi: 10.1023/A:1022988116044.  Google Scholar

[5]

J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory,, Math. Prog., 57 (1992), 15.  doi: 10.1007/BF01581072.  Google Scholar

[6]

R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming,, SIAM J. Optim., 19 (2008), 217.  doi: 10.1137/07068432X.  Google Scholar

[7]

A. Capătă, Families of Henig dilating cones and proper efficiency in vector equilibrium problems,, Autom. Comp. Appl. Math., 19 (2010), 67.   Google Scholar

[8]

A. Capătă, Optimality conditions for vector equilibrium problems and their applications,, J. Ind. Manag. Optim., 9 (2013), 659.  doi: 10.3934/jimo.2013.9.659.  Google Scholar

[9]

G.-Y. Chen and S. H. Hou, Existence of solutions for vector variational inequalities,, in F. Giannessi (ed.), 38 (2000), 73.  doi: 10.1007/978-1-4613-0299-5_5.  Google Scholar

[10]

B. D. Craven, Mathematical Programming and Control Theory,, xi+163 pp., (1978).   Google Scholar

[11]

P. Daniele, S. Giuffrè and A. Maugeri, Infinite dimensional duality and applications,, Math. Ann., 339 (2007), 221.  doi: 10.1007/s00208-007-0118-y.  Google Scholar

[12]

F. Flores-Bazán and G. Mastroeni, Strong duality in cone constrained nonconvex optimization,, SIAM. J. Optim., 23 (2013), 153.  doi: 10.1137/120861400.  Google Scholar

[13]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior,, J. Math. Anal. Appl., 307 (2005), 12.  doi: 10.1016/j.jmaa.2004.10.001.  Google Scholar

[14]

X. H. Gong, Symmetric strong vector quasi-equilibrium problems,, Math. Methods Oper. Res., 65 (2007), 305.  doi: 10.1007/s00186-006-0114-0.  Google Scholar

[15]

X. H. Gong, Optimality conditions for vector equilibrium problems,, J. Math. Anal. Appl., 342 (2008), 1455.  doi: 10.1016/j.jmaa.2008.01.026.  Google Scholar

[16]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variatonal Methods in Partially Ordered Spaces,, xiv+350 pp., (2003).   Google Scholar

[17]

T. X. D. Ha, Optimality conditions for various solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems,, Nonlinear Anal., 75 (2012), 1305.  doi: 10.1016/j.na.2011.03.015.  Google Scholar

[18]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[19]

R. B. Holmes, Geometric Functional Analysis and its Applications,, Springer-Verlag, (1975).   Google Scholar

[20]

M. A. Limber and R. K. Goodrich, Quasi interiors, Lagrange multipliers and $L^p$ spectral estimation with lattice bounds,, J. Optim. Theory Appl., 78 (1993), 143.  doi: 10.1007/BF00940705.  Google Scholar

[21]

K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities,, J. Optim. Theory Appl., 92 (1997), 117.  doi: 10.1023/A:1022640130410.  Google Scholar

[22]

X. J. Long, Y. Q. Huang and Z. Y. Peng, Optimality conditions for the Henig efficient solution of vector equilibrium problems with constraints,, Optim. Lett., 5 (2011), 717.  doi: 10.1007/s11590-010-0241-7.  Google Scholar

[23]

B. C. Ma and X. H. Gong, Optimality conditions for vector equilibrium problems in normed spaces,, Optimization, 60 (2011), 1441.  doi: 10.1080/02331931003657709.  Google Scholar

[24]

J. Morgan and M. Romaniello, Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities,, J. Optim. Theory Appl., 130 (2006), 309.  doi: 10.1007/s10957-006-9104-x.  Google Scholar

[25]

S. Paeck, Convexlike and concavelike conditions in alternative, minimax and minimization theorems,, J. Optim. Theory Appl., 74 (1992), 317.  doi: 10.1007/BF00940897.  Google Scholar

[26]

Q. Qiu, Optimality conditions of globally efficient solutions for vector equilibrium problems with generalized convexity,, J. Ineq. Appl., (2009).  doi: 10.1155/2009/898213.  Google Scholar

[27]

Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints,, J. Ind. Manag. Optim., 5 (2009), 783.  doi: 10.3934/jimo.2009.5.783.  Google Scholar

[28]

R. T. Rockafellar, Conjugate Duality and Optimization,, Society for Industrial and Applied Mathematics, (1974).   Google Scholar

[29]

X. M. Yang, D. Li and X. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, J. Optim. Theory Appl., 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

[30]

C. Zălinescu, Convex Analysis in General Vector Spaces,, World Scientific, (2002).  doi: 10.1142/9789812777096.  Google Scholar

show all references

References:
[1]

Q. H. Ansari, W. Oettli and D. Schläger, A generalization of vectorial equilibria,, Math. Meth. Oper. Res., 46 (1997), 147.  doi: 10.1007/BF01217687.  Google Scholar

[2]

M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[3]

G. Bigi, A. Capătă and G. Kassay, Existence results for strong vector equilibrium problems and their applications,, Optimization, 61 (2012), 567.  doi: 10.1080/02331934.2010.528761.  Google Scholar

[4]

J. M. Borwein and R. Goebel, Notions of relative interior in Banach spaces,, J. Math. Sci., 115 (2003), 2542.  doi: 10.1023/A:1022988116044.  Google Scholar

[5]

J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory,, Math. Prog., 57 (1992), 15.  doi: 10.1007/BF01581072.  Google Scholar

[6]

R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming,, SIAM J. Optim., 19 (2008), 217.  doi: 10.1137/07068432X.  Google Scholar

[7]

A. Capătă, Families of Henig dilating cones and proper efficiency in vector equilibrium problems,, Autom. Comp. Appl. Math., 19 (2010), 67.   Google Scholar

[8]

A. Capătă, Optimality conditions for vector equilibrium problems and their applications,, J. Ind. Manag. Optim., 9 (2013), 659.  doi: 10.3934/jimo.2013.9.659.  Google Scholar

[9]

G.-Y. Chen and S. H. Hou, Existence of solutions for vector variational inequalities,, in F. Giannessi (ed.), 38 (2000), 73.  doi: 10.1007/978-1-4613-0299-5_5.  Google Scholar

[10]

B. D. Craven, Mathematical Programming and Control Theory,, xi+163 pp., (1978).   Google Scholar

[11]

P. Daniele, S. Giuffrè and A. Maugeri, Infinite dimensional duality and applications,, Math. Ann., 339 (2007), 221.  doi: 10.1007/s00208-007-0118-y.  Google Scholar

[12]

F. Flores-Bazán and G. Mastroeni, Strong duality in cone constrained nonconvex optimization,, SIAM. J. Optim., 23 (2013), 153.  doi: 10.1137/120861400.  Google Scholar

[13]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior,, J. Math. Anal. Appl., 307 (2005), 12.  doi: 10.1016/j.jmaa.2004.10.001.  Google Scholar

[14]

X. H. Gong, Symmetric strong vector quasi-equilibrium problems,, Math. Methods Oper. Res., 65 (2007), 305.  doi: 10.1007/s00186-006-0114-0.  Google Scholar

[15]

X. H. Gong, Optimality conditions for vector equilibrium problems,, J. Math. Anal. Appl., 342 (2008), 1455.  doi: 10.1016/j.jmaa.2008.01.026.  Google Scholar

[16]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variatonal Methods in Partially Ordered Spaces,, xiv+350 pp., (2003).   Google Scholar

[17]

T. X. D. Ha, Optimality conditions for various solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems,, Nonlinear Anal., 75 (2012), 1305.  doi: 10.1016/j.na.2011.03.015.  Google Scholar

[18]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[19]

R. B. Holmes, Geometric Functional Analysis and its Applications,, Springer-Verlag, (1975).   Google Scholar

[20]

M. A. Limber and R. K. Goodrich, Quasi interiors, Lagrange multipliers and $L^p$ spectral estimation with lattice bounds,, J. Optim. Theory Appl., 78 (1993), 143.  doi: 10.1007/BF00940705.  Google Scholar

[21]

K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities,, J. Optim. Theory Appl., 92 (1997), 117.  doi: 10.1023/A:1022640130410.  Google Scholar

[22]

X. J. Long, Y. Q. Huang and Z. Y. Peng, Optimality conditions for the Henig efficient solution of vector equilibrium problems with constraints,, Optim. Lett., 5 (2011), 717.  doi: 10.1007/s11590-010-0241-7.  Google Scholar

[23]

B. C. Ma and X. H. Gong, Optimality conditions for vector equilibrium problems in normed spaces,, Optimization, 60 (2011), 1441.  doi: 10.1080/02331931003657709.  Google Scholar

[24]

J. Morgan and M. Romaniello, Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities,, J. Optim. Theory Appl., 130 (2006), 309.  doi: 10.1007/s10957-006-9104-x.  Google Scholar

[25]

S. Paeck, Convexlike and concavelike conditions in alternative, minimax and minimization theorems,, J. Optim. Theory Appl., 74 (1992), 317.  doi: 10.1007/BF00940897.  Google Scholar

[26]

Q. Qiu, Optimality conditions of globally efficient solutions for vector equilibrium problems with generalized convexity,, J. Ineq. Appl., (2009).  doi: 10.1155/2009/898213.  Google Scholar

[27]

Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints,, J. Ind. Manag. Optim., 5 (2009), 783.  doi: 10.3934/jimo.2009.5.783.  Google Scholar

[28]

R. T. Rockafellar, Conjugate Duality and Optimization,, Society for Industrial and Applied Mathematics, (1974).   Google Scholar

[29]

X. M. Yang, D. Li and X. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, J. Optim. Theory Appl., 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

[30]

C. Zălinescu, Convex Analysis in General Vector Spaces,, World Scientific, (2002).  doi: 10.1142/9789812777096.  Google Scholar

[1]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[4]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[5]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[6]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[9]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[10]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[13]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]