Advanced Search
Article Contents
Article Contents

A family of extragradient methods for solving equilibrium problems

Abstract Related Papers Cited by
  • In this paper we introduce a class of numerical methods for solving an equilibrium problem. This class depends on a parameter and contains the classical extragradient method and a generalization of the two-step extragradient method proposed recently by Zykina and Melen'chuk for solving variational inequality problems. Convergence of each algorithm of this class to a solution of the equilibrium problem is obtained under the condition that the equilibrium function associated with the problem is pseudomonotone and Lipschitz continuous. Some preliminary numerical results are given to compare the numerical behavior of the two-step extragradient method with respect to the other methods of the class and in particular to the extragradient method.
    Mathematics Subject Classification: Primary: 49J40, 90C25; Secondary: 65K10.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Bello Cruz, P. Santos and S. Scheimberg, A two-phase algorithm for a variational inequality formulation of equilibrium problems, J. Optim. Theory Appl., 159 (2013), 562-575.doi: 10.1007/s10957-012-0181-8.


    G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Research, 227 (2013), 1-11.doi: 10.1016/j.ejor.2012.11.037.


    E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.


    F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vols I and II, Springer-Verlag, New York, 2003.


    A. Heusinger and C. Kanzow, Relaxation methods for generalized Nash equilibrium problems with inexact line search, J. Optim. Theory Appl., 143 (2009), 159-183.doi: 10.1007/s10957-009-9553-0.


    K. Fan, A minimax inequality and applications, in Inequality III (ed. O. Shisha), Academic Press, (1972), 103-113.


    E. Khobotov, Modification of the extragradient method for solving variational inequalities and certain optimization problems, USSR Comput. Math. Math. Phys., 27 (1987), 1462-1473.


    I. Konnov, Equilibrium Models and Variational Inequalities, Elsevier, Amsterdam, 2007.


    G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747-756.


    J. Krawczyk and S. Uryasev, Relaxation algorithms to find Nash equilibria with economic applications, Environmental Modeling and Assessment, 5 (2000), 63-73.


    G. Mastroeni, On auxiliary principle for equilibrium problems, in Equilibrium Problems and Variational Models (eds. P. Daniele, F. Giannessi and A. Maugeri), Kluwer Academic Publishers, Dordrecht, 68 (2003), 289-298.doi: 10.1007/978-1-4613-0239-1_15.


    A. Nagurney, Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Dordrecht, 1993.doi: 10.1007/978-94-011-2178-1.


    T. T. V. Nguyen, J. J. Strodiot and V. H. Nguyen, The interior proximal extragradient method for solving equilibrium problems, J. Glob. Optim., 44 (2009), 175-192.doi: 10.1007/s10898-008-9311-0.


    T. T. V. Nguyen, J. J. Strodiot and V. H. Nguyen, A bundle method for solving equilibrium problems, Math. Program., 116 (2009), 529-552.doi: 10.1007/s10107-007-0112-x.


    J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 2006.


    R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.


    J. J. Strodiot, T. T. V. Nguyen and V. H. Nguyen, A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems, J. Global Optim., 56 (2013), 373-397.doi: 10.1007/s10898-011-9814-y.


    D. Q. Tran, L. D. Muu and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749-776.doi: 10.1080/02331930601122876.


    D. Zaporozhets, A. Zykina and N. Melen'chuk, Comparative analysis of the extragradient methods for solution of the variational inequalities of some problems, Automation and Remote Control, 73 (2012), 626-636.doi: 10.1134/S0005117912040030.


    A. Zykina and N. Melen'chuk, A two-step extragradient method for variational inequalities, Russian Mathematics, 54 (2010), 71-73.doi: 10.3103/S1066369X10090082.


    A. Zykina and N. Melen'chuk, A doublestep extragradient method for solving a resource management problem, Modeling and Analysis of Information Systems, 17 (2010), 65-75.


    A. Zykina and N. Melen'chuk, A doublestep extragradient method for solving a problem of the management of resources, Automatic Control and Computer Science, 45 (2011), 452-459.doi: 10.3103/S0146411611070170.


    A. Zykina and N. Melen'chuk, Convergence of the two-step extragradient method in a finite number of iterations, III International Conference: Optimization and Applications, Optima-2012, Costa da Caparica, Portugal, (2012), 23-30.

  • 加载中

Article Metrics

HTML views() PDF downloads(145) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint