-
Previous Article
Optimization analysis of the machine repair problem with multiple vacations and working breakdowns
- JIMO Home
- This Issue
-
Next Article
An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management
Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved
1. | School of Science, Dalian Nationalities University, Dalian, 116600, China |
2. | School of Mathematics, Liaoning Normal University, Dalian, 116029, China |
3. | College of Information Science and Engineering, Shandong Agricultural University, Taian, 271018, China |
4. | School of Science, Dalian Ocean University, Dalian, 116023, China |
References:
[1] |
F. Alizadeh, Interior point methods in semidefinite programming with application to combinatorial optimization,, SIAM J. Optim., 5 (1995), 13.
doi: 10.1137/0805002. |
[2] |
P. Apkarian, D. Noll and H. D. Tuan, Fixed-order $H_\infty$ control design via a partially augmented lagrangian method,, International Journal of Robust and Nonlinear Control, 13 (2003), 1137.
doi: 10.1002/rnc.807. |
[3] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer-Verlag, (2000).
doi: 10.1007/978-1-4612-1394-9. |
[4] |
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).
doi: 10.1137/1.9781611970777. |
[5] |
C. Chen, T. C. Edwin Cheng, S. Li and X. Yang, Nonlinear augmented Lagrangian for nonconvex multiobjective optimization,, Journal of Industrial and Management Optimization, 7 (2011), 157.
doi: 10.3934/jimo.2011.7.157. |
[6] |
M. Doljansky and M. Teboulle, An interior proximal algorithm and the exponential multiplier method for semidefinite programming,, SIAM J. Optim., 9 (1999), 1.
doi: 10.1137/S1052623496309405. |
[7] |
B. Fares, P. Apkarian and D. Noll, An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory,, International Journal of Control, 74 (2001), 348.
doi: 10.1080/00207170010010605. |
[8] |
B. Fares, D. Noll and P. Apkarian, Robust control via sequential semidefinite programming,, SIAM J. on Control and Optimization, 40 (2002), 1791.
doi: 10.1137/S0363012900373483. |
[9] |
S. He and Y. Nie, A class of nonlinear Lagrangian algorithms for minimax problems,, Journal of Industrial and Management Optimization, 9 (2013), 75.
doi: 10.3934/jimo.2013.9.75. |
[10] |
C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming,, SIAM J. Optim., 10 (2000), 673.
doi: 10.1137/S1052623497328987. |
[11] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge University Press, (1991).
doi: 10.1017/CBO9780511840371. |
[12] |
M. Kočvara and M. Stingl, Pennon: A code for convex nonlinear and semidefinite programming,, Optimization Methods and Software, 18 (2003), 317.
doi: 10.1080/1055678031000098773. |
[13] |
Y. Li and L. Zhang, A nonlinear Lagrangian method based on Log-Sigmoid function for nonconvex semidefinite programming,, Journal of Industrial and Management Optimization, 5 (2009), 651.
doi: 10.3934/jimo.2009.5.651. |
[14] |
J. Lin, H. Chen and R. Sheu, Augmented Lagrange primal-dual approach for generalized fractional programming problems,, Journal of Industrial and Management Optimization, 9 (2013), 723.
doi: 10.3934/jimo.2013.9.723. |
[15] |
L. Mosheyev and M. Zibulevsky, Penalty/Barrier multiplier algorithm for semidefinite programming,, Optimization Methods and Software, 13 (2000), 235.
doi: 10.1080/10556780008805787. |
[16] |
D. Noll, Local convergence of an augmented Lagrangian method for matrix inequality constrained programming,, Optimization Methods and Software, 22 (2007), 777.
doi: 10.1080/10556780701223970. |
[17] |
D. Noll and P. Apkarian, Spectral bundle methods for non-convex maximum eigenvalue functions: first-order methods,, Math. Programming Series B, 104 (2005), 701. Google Scholar |
[18] |
D. Noll, M. Torki and P. Apkarian, Partially augmented Lagrangian method for matrix inequality constraints,, SIAM Journal on Optimization, 15 (2004), 161.
doi: 10.1137/S1052623402413963. |
[19] |
A. Shapiro, First and second order analysis of nonlinear semidefinite programs,, Mathematical Programming, 77 (1997), 301.
doi: 10.1007/BF02614439. |
[20] |
A. Shapiro and J. Sun, Some properties of the augmented Lagrangian in cone constrained optimization,, Mathematics of Operations Research, 29 (2004), 479.
doi: 10.1287/moor.1040.0103. |
[21] |
M. Stingl, On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian Methods,, Ph.D thesis, (2006). Google Scholar |
[22] |
D. Sun, J. Sun and L. Zhang, The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming,, Mathematical Programming, 114 (2008), 349.
doi: 10.1007/s10107-007-0105-9. |
[23] |
M. J. Todd, Semidefinite optimization,, Acta Numerica, 10 (2001), 515.
doi: 10.1017/S0962492901000071. |
[24] |
L. Vanderberghe and S. Boyd, Semidefinite programming,, SIAM Rev., 38 (1996), 49.
doi: 10.1137/1038003. |
[25] |
H. Wolkkowicz, R. Saigal and L. Vanderberghe, Handbook of Semidefinite Programming-Theory, Algorithms, and Applications,, Kluwer Academic Publishers, (2000).
doi: 10.1007/978-1-4615-4381-7. |
[26] |
L. Zhang, Y. Li and J. Wu, Nonlinear rescaling Lagrangians for nonconvex semidefinite programming,, Optimization, (2013).
doi: 10.1080/02331934.2013.848861. |
[27] |
L. Zhang, J. Gu and X. Xiao, A class of nonlinear Lagrangians for nonconvex second order cone programming,, Comput. Optim. Appl., 49 (2011), 61.
doi: 10.1007/s10589-009-9279-9. |
[28] |
L. Zhang, Y. Ren, Y. Wu and X. Xiao, A class of nonlinear Lagrangians: Theory and algorithm,, Asia-Pacific Journal of Operational Research, 25 (2008), 327.
doi: 10.1142/S021759590800178X. |
[29] |
M. Zibulevski, Penalty Barrier Multiplier Methods for Large-Scale Nonlinear and Semidefinite Programming,, Ph.D thesis, (1996). Google Scholar |
show all references
References:
[1] |
F. Alizadeh, Interior point methods in semidefinite programming with application to combinatorial optimization,, SIAM J. Optim., 5 (1995), 13.
doi: 10.1137/0805002. |
[2] |
P. Apkarian, D. Noll and H. D. Tuan, Fixed-order $H_\infty$ control design via a partially augmented lagrangian method,, International Journal of Robust and Nonlinear Control, 13 (2003), 1137.
doi: 10.1002/rnc.807. |
[3] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer-Verlag, (2000).
doi: 10.1007/978-1-4612-1394-9. |
[4] |
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).
doi: 10.1137/1.9781611970777. |
[5] |
C. Chen, T. C. Edwin Cheng, S. Li and X. Yang, Nonlinear augmented Lagrangian for nonconvex multiobjective optimization,, Journal of Industrial and Management Optimization, 7 (2011), 157.
doi: 10.3934/jimo.2011.7.157. |
[6] |
M. Doljansky and M. Teboulle, An interior proximal algorithm and the exponential multiplier method for semidefinite programming,, SIAM J. Optim., 9 (1999), 1.
doi: 10.1137/S1052623496309405. |
[7] |
B. Fares, P. Apkarian and D. Noll, An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory,, International Journal of Control, 74 (2001), 348.
doi: 10.1080/00207170010010605. |
[8] |
B. Fares, D. Noll and P. Apkarian, Robust control via sequential semidefinite programming,, SIAM J. on Control and Optimization, 40 (2002), 1791.
doi: 10.1137/S0363012900373483. |
[9] |
S. He and Y. Nie, A class of nonlinear Lagrangian algorithms for minimax problems,, Journal of Industrial and Management Optimization, 9 (2013), 75.
doi: 10.3934/jimo.2013.9.75. |
[10] |
C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming,, SIAM J. Optim., 10 (2000), 673.
doi: 10.1137/S1052623497328987. |
[11] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge University Press, (1991).
doi: 10.1017/CBO9780511840371. |
[12] |
M. Kočvara and M. Stingl, Pennon: A code for convex nonlinear and semidefinite programming,, Optimization Methods and Software, 18 (2003), 317.
doi: 10.1080/1055678031000098773. |
[13] |
Y. Li and L. Zhang, A nonlinear Lagrangian method based on Log-Sigmoid function for nonconvex semidefinite programming,, Journal of Industrial and Management Optimization, 5 (2009), 651.
doi: 10.3934/jimo.2009.5.651. |
[14] |
J. Lin, H. Chen and R. Sheu, Augmented Lagrange primal-dual approach for generalized fractional programming problems,, Journal of Industrial and Management Optimization, 9 (2013), 723.
doi: 10.3934/jimo.2013.9.723. |
[15] |
L. Mosheyev and M. Zibulevsky, Penalty/Barrier multiplier algorithm for semidefinite programming,, Optimization Methods and Software, 13 (2000), 235.
doi: 10.1080/10556780008805787. |
[16] |
D. Noll, Local convergence of an augmented Lagrangian method for matrix inequality constrained programming,, Optimization Methods and Software, 22 (2007), 777.
doi: 10.1080/10556780701223970. |
[17] |
D. Noll and P. Apkarian, Spectral bundle methods for non-convex maximum eigenvalue functions: first-order methods,, Math. Programming Series B, 104 (2005), 701. Google Scholar |
[18] |
D. Noll, M. Torki and P. Apkarian, Partially augmented Lagrangian method for matrix inequality constraints,, SIAM Journal on Optimization, 15 (2004), 161.
doi: 10.1137/S1052623402413963. |
[19] |
A. Shapiro, First and second order analysis of nonlinear semidefinite programs,, Mathematical Programming, 77 (1997), 301.
doi: 10.1007/BF02614439. |
[20] |
A. Shapiro and J. Sun, Some properties of the augmented Lagrangian in cone constrained optimization,, Mathematics of Operations Research, 29 (2004), 479.
doi: 10.1287/moor.1040.0103. |
[21] |
M. Stingl, On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian Methods,, Ph.D thesis, (2006). Google Scholar |
[22] |
D. Sun, J. Sun and L. Zhang, The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming,, Mathematical Programming, 114 (2008), 349.
doi: 10.1007/s10107-007-0105-9. |
[23] |
M. J. Todd, Semidefinite optimization,, Acta Numerica, 10 (2001), 515.
doi: 10.1017/S0962492901000071. |
[24] |
L. Vanderberghe and S. Boyd, Semidefinite programming,, SIAM Rev., 38 (1996), 49.
doi: 10.1137/1038003. |
[25] |
H. Wolkkowicz, R. Saigal and L. Vanderberghe, Handbook of Semidefinite Programming-Theory, Algorithms, and Applications,, Kluwer Academic Publishers, (2000).
doi: 10.1007/978-1-4615-4381-7. |
[26] |
L. Zhang, Y. Li and J. Wu, Nonlinear rescaling Lagrangians for nonconvex semidefinite programming,, Optimization, (2013).
doi: 10.1080/02331934.2013.848861. |
[27] |
L. Zhang, J. Gu and X. Xiao, A class of nonlinear Lagrangians for nonconvex second order cone programming,, Comput. Optim. Appl., 49 (2011), 61.
doi: 10.1007/s10589-009-9279-9. |
[28] |
L. Zhang, Y. Ren, Y. Wu and X. Xiao, A class of nonlinear Lagrangians: Theory and algorithm,, Asia-Pacific Journal of Operational Research, 25 (2008), 327.
doi: 10.1142/S021759590800178X. |
[29] |
M. Zibulevski, Penalty Barrier Multiplier Methods for Large-Scale Nonlinear and Semidefinite Programming,, Ph.D thesis, (1996). Google Scholar |
[1] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[2] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[3] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[4] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[5] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[6] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[7] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[8] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[9] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[10] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[11] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[12] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[13] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[14] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[15] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[16] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[17] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[18] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[19] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[20] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]