• Previous Article
    Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps
  • JIMO Home
  • This Issue
  • Next Article
    Neural network smoothing approximation method for stochastic variational inequality problems
April  2015, 11(2): 661-671. doi: 10.3934/jimo.2015.11.661

Stability of solution mapping for parametric symmetric vector equilibrium problems

1. 

College of Sciences, Chongqing Jiaotong University, Chongqing, 400074, China

2. 

College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067

Received  October 2013 Revised  May 2014 Published  September 2014

This paper is concerned with the stability for a parametric symmetric vector equilibrium problem. A parametric gap function for the parametric symmetric vector equilibrium problem is introduced and investigated. By virtue of this function, we establish the sufficient and necessary conditions for the Hausdorff lower semicontinuity of solution mapping to a parametric symmetric vector equilibrium problem. The results presented in this paper generalize and improve the corresponding results in the recent literature.
Citation: Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661
References:
[1]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.  doi: 10.1023/A:1017581009670.  Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[4]

B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982).  doi: 10.1007/978-3-0348-6328-5.  Google Scholar

[5]

C. Berge, Topological Spaces., Oliver and Boyd, (1963).   Google Scholar

[6]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.   Google Scholar

[7]

C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[8]

C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[9]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.  doi: 10.1016/j.camwa.2010.08.036.  Google Scholar

[10]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).   Google Scholar

[11]

G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[12]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359.  doi: 10.1007/s10957-007-9309-7.  Google Scholar

[13]

A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099.  doi: 10.1016/j.jmaa.2005.09.079.  Google Scholar

[14]

J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708.  doi: 10.1016/S0022-247X(03)00479-7.  Google Scholar

[15]

F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.   Google Scholar

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[17]

N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343.  doi: 10.1016/S0895-7177(03)90045-8.  Google Scholar

[18]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[19]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: 10.1080/02331930412331330379.  Google Scholar

[20]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.  doi: 10.1007/s10957-008-9386-2.  Google Scholar

[21]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283.  doi: 10.1023/A:1014830925232.  Google Scholar

[22]

M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.   Google Scholar

[23]

W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909.  doi: 10.1016/j.jmaa.2011.09.052.  Google Scholar

[24]

J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[25]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807.  doi: 10.1016/j.camwa.2011.11.046.  Google Scholar

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317.  doi: 10.1007/s10957-011-9843-1.  Google Scholar

[27]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.   Google Scholar

show all references

References:
[1]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.  doi: 10.1023/A:1017581009670.  Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[4]

B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982).  doi: 10.1007/978-3-0348-6328-5.  Google Scholar

[5]

C. Berge, Topological Spaces., Oliver and Boyd, (1963).   Google Scholar

[6]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.   Google Scholar

[7]

C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[8]

C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[9]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.  doi: 10.1016/j.camwa.2010.08.036.  Google Scholar

[10]

G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).   Google Scholar

[11]

G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[12]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359.  doi: 10.1007/s10957-007-9309-7.  Google Scholar

[13]

A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099.  doi: 10.1016/j.jmaa.2005.09.079.  Google Scholar

[14]

J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708.  doi: 10.1016/S0022-247X(03)00479-7.  Google Scholar

[15]

F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.   Google Scholar

[16]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[17]

N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343.  doi: 10.1016/S0895-7177(03)90045-8.  Google Scholar

[18]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[19]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: 10.1080/02331930412331330379.  Google Scholar

[20]

K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.  doi: 10.1007/s10957-008-9386-2.  Google Scholar

[21]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283.  doi: 10.1023/A:1014830925232.  Google Scholar

[22]

M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.   Google Scholar

[23]

W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909.  doi: 10.1016/j.jmaa.2011.09.052.  Google Scholar

[24]

J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[25]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807.  doi: 10.1016/j.camwa.2011.11.046.  Google Scholar

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317.  doi: 10.1007/s10957-011-9843-1.  Google Scholar

[27]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.   Google Scholar

[1]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[2]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[3]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[4]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[5]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[8]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[9]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[10]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[11]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[12]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[13]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[14]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[17]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]