-
Previous Article
Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps
- JIMO Home
- This Issue
-
Next Article
Neural network smoothing approximation method for stochastic variational inequality problems
Stability of solution mapping for parametric symmetric vector equilibrium problems
1. | College of Sciences, Chongqing Jiaotong University, Chongqing, 400074, China |
2. | College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067 |
References:
[1] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.
doi: 10.1023/A:1017581009670. |
[2] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.
doi: 10.1023/A:1015366419163. |
[3] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).
|
[4] |
B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982).
doi: 10.1007/978-3-0348-6328-5. |
[5] |
C. Berge, Topological Spaces., Oliver and Boyd, (1963). Google Scholar |
[6] |
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.
|
[7] |
C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.
doi: 10.1016/j.na.2008.02.032. |
[8] |
C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.
doi: 10.3934/jimo.2007.3.519. |
[9] |
C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.
doi: 10.1016/j.camwa.2010.08.036. |
[10] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).
|
[11] |
G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451.
doi: 10.1007/s10898-003-2683-2. |
[12] |
J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359.
doi: 10.1007/s10957-007-9309-7. |
[13] |
A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099.
doi: 10.1016/j.jmaa.2005.09.079. |
[14] |
J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708.
doi: 10.1016/S0022-247X(03)00479-7. |
[15] |
F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.
|
[16] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[17] |
N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343.
doi: 10.1016/S0895-7177(03)90045-8. |
[18] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[19] |
B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.
doi: 10.1080/02331930412331330379. |
[20] |
K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.
doi: 10.1007/s10957-008-9386-2. |
[21] |
S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283.
doi: 10.1023/A:1014830925232. |
[22] |
M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.
|
[23] |
W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909.
doi: 10.1016/j.jmaa.2011.09.052. |
[24] |
J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240.
doi: 10.1006/jmaa.1997.5288. |
[25] |
R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807.
doi: 10.1016/j.camwa.2011.11.046. |
[26] |
R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317.
doi: 10.1007/s10957-011-9843-1. |
[27] |
R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.
|
show all references
References:
[1] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.
doi: 10.1023/A:1017581009670. |
[2] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.
doi: 10.1023/A:1015366419163. |
[3] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Systems & Control: Foundations & Applications, 2 (1990).
|
[4] |
B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization,, Akademie-Verlag, (1982).
doi: 10.1007/978-3-0348-6328-5. |
[5] |
C. Berge, Topological Spaces., Oliver and Boyd, (1963). Google Scholar |
[6] |
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.
|
[7] |
C. R. Chen and S. J. Li, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.
doi: 10.1016/j.na.2008.02.032. |
[8] |
C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.
doi: 10.3934/jimo.2007.3.519. |
[9] |
C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.
doi: 10.1016/j.camwa.2010.08.036. |
[10] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis,, in: Lecture Notes in Econonics and Mathematical Systems, (2005).
|
[11] |
G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem,, J. Global Optim., 32 (2005), 451.
doi: 10.1007/s10898-003-2683-2. |
[12] |
J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems,, J. Optim. Theory Appl., 136 (2008), 359.
doi: 10.1007/s10957-007-9309-7. |
[13] |
A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 322 (2006), 1099.
doi: 10.1016/j.jmaa.2005.09.079. |
[14] |
J. Y. Fu, Symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 285 (2003), 708.
doi: 10.1016/S0022-247X(03)00479-7. |
[15] |
F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems,, Variational Inequalities and Complementarity, (1980), 151.
|
[16] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[17] |
N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications,, Math. Comput. Modelling., 37 (2003), 1343.
doi: 10.1016/S0895-7177(03)90045-8. |
[18] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[19] |
B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.
doi: 10.1080/02331930412331330379. |
[20] |
K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.
doi: 10.1007/s10957-008-9386-2. |
[21] |
S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim.Theory Appl., 113 (2002), 283.
doi: 10.1023/A:1014830925232. |
[22] |
M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria,, Le Matematiche, 49 (1994), 313.
|
[23] |
W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems,, J. Math. Anal. Appl., 387 (2012), 909.
doi: 10.1016/j.jmaa.2011.09.052. |
[24] |
J. Zhao, The lower semicontinuity of optimal solution sets,, J. Math. Anal. Appl., 207 (1997), 240.
doi: 10.1006/jmaa.1997.5288. |
[25] |
R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems,, Comput. Math. Appl., 63 (2012), 807.
doi: 10.1016/j.camwa.2011.11.046. |
[26] |
R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces,, J. Optim. Theory Appl., 150 (2011), 317.
doi: 10.1007/s10957-011-9843-1. |
[27] |
R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems,, Taiwanese J. Math., 13 (2009), 821.
|
[1] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[2] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[3] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[4] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[5] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[6] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[7] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[8] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[11] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[12] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[13] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[14] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[15] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[16] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[17] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[18] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[19] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[20] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]