Citation: |
[1] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems, J. Optim. Theory Appl., 110 (2001), 481-492.doi: 10.1023/A:1017581009670. |
[2] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations for vector equilibrium problems, J. Optim. Theory Appl., 113 (2002), 435-447.doi: 10.1023/A:1015366419163. |
[3] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhäuser Boston, Inc., Boston, 1990. |
[4] |
B. Bank, J. Guddat, D. Klattle, B. Kummer and K. Tammar, Non-Linear Parametric Optimization, Akademie-Verlag, Berlin, 1982.doi: 10.1007/978-3-0348-6328-5. |
[5] |
C. Berge, Topological Spaces. Oliver and Boyd, London, 1963. |
[6] |
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123-145. |
[7] |
C. R. Chen and S. J. Li, Stability of weak vector variational inequality, Nonlinear Anal., 70 (2009), 1528-1535.doi: 10.1016/j.na.2008.02.032. |
[8] |
C. R. Chen and S. J. Li, Semicontinuity of the solution map to a set-valued weak vector variational inequality, J. Ind. Manag. Optim., 3 (2007), 519-528.doi: 10.3934/jimo.2007.3.519. |
[9] |
C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalize vector quasivariational inequality, Comput. Math. Appl., 60 (2010), 2417-2425.doi: 10.1016/j.camwa.2010.08.036. |
[10] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-valued and Variational Anyasis, in: Lecture Notes in Econonics and Mathematical Systems, Vol.541. Springer, Berlin, 2005. |
[11] |
G. Y. Chen, X. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quai-vector equilibrium problem, J. Global Optim., 32 (2005), 451-466.doi: 10.1007/s10898-003-2683-2. |
[12] |
J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric quasi-equilibrium problems, J. Optim. Theory Appl., 136 (2008), 359-374.doi: 10.1007/s10957-007-9309-7. |
[13] |
A. P. Farajzadeh, On the symmetric vector quasi-equilibrium problems, J. Math. Anal. Appl., 322 (2006), 1099-1110.doi: 10.1016/j.jmaa.2005.09.079. |
[14] |
J. Y. Fu, Symmetric vector quasi-equilibrium problems, J. Math. Anal. Appl., 285 (2003), 708-713.doi: 10.1016/S0022-247X(03)00479-7. |
[15] |
F. Giannessi, Theorem of the alternative, quadratic programs, and comlementarity problems, Variational Inequalities and Complementarity, Wiley, New York, (1980), 151-186. |
[16] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized sytems, J. Optim. Theory Appl., 138 (2008), 197-205.doi: 10.1007/s10957-008-9379-1. |
[17] |
N. J. Huang, J. Li and H. B.Thompson, Implicit vector equilibrium problems with applications, Math. Comput. Modelling., 37 (2003), 1343-1356.doi: 10.1016/S0895-7177(03)90045-8. |
[18] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007), 329-339.doi: 10.1007/s10957-007-9190-4. |
[19] |
B. T. Kien, On the lower semicontinuity of optimal solution sets, Optimization, 54 (2005), 123-130.doi: 10.1080/02331930412331330379. |
[20] |
K. Kimura and J. C. Yao, Semicontinuity of solutiong mappings of parametric generalized vector equilibrium problems, J. Optim. Theory Appl., 138 (2008), 429-443.doi: 10.1007/s10957-008-9386-2. |
[21] |
S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim.Theory Appl., 113 (2002), 283-295.doi: 10.1023/A:1014830925232. |
[22] |
M. A. Noor and W. Oettli, On general nonlinear complementary problems and quasi-equilibria, Le Matematiche, 49 (1994), 313-331. |
[23] |
W. Y. Zhang, Well-posedness for convex symmetric vector quasi-equilibrium problems, J. Math. Anal. Appl., 387 (2012), 909-915.doi: 10.1016/j.jmaa.2011.09.052. |
[24] |
J. Zhao, The lower semicontinuity of optimal solution sets, J. Math. Anal. Appl., 207 (1997), 240-254.doi: 10.1006/jmaa.1997.5288. |
[25] |
R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems, Comput. Math. Appl., 63 (2012), 807-815.doi: 10.1016/j.camwa.2011.11.046. |
[26] |
R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in Reflexive Banach Spaces, J. Optim. Theory Appl., 150 (2011), 317-326.doi: 10.1007/s10957-011-9843-1. |
[27] |
R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connecedness of solution sets to symmtric vector equilibrium problems, Taiwanese J. Math., 13 (2009), 821-836. |