- Previous Article
- JIMO Home
- This Issue
-
Next Article
Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps
Two-machine scheduling with periodic availability constraints to minimize makespan
1. | Department of Mathematics, School of Science, East China University of Science and Technology, Shanghai 200237, China, China |
References:
[1] |
T. C. E. Cheng and G. Wang, An improved heuristic for two-machine flowshop scheduling with an availability constraint, Operation Research Letters, 26 (2000), 223-229.
doi: 10.1016/S0167-6377(00)00033-X. |
[2] |
R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics, 17 (1969), 416-429.
doi: 10.1137/0117039. |
[3] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan, Computer & Operations Research, 34 (2007), 1764-1770.
doi: 10.1016/j.cor.2005.05.034. |
[4] |
C. J. Liao, D. L. Shyur and C. H. Lin, Makespan minimization for two parallel machines with an availability constraint, European journal of operational Research, 160 (2005), 445-456.
doi: 10.1016/j.ejor.2003.08.034. |
[5] |
C. J. Liao and W. J. Chen, Single-machine scheduling with periodic maintenance and nonresumable jobs, Computers & operations Research, 30 (2003), 1335-1347.
doi: 10.1016/S0305-0548(02)00074-6. |
[6] |
C. Y. Lee, Machine scheduling with an availability constraint, Journal of Global optimization, 9 (1996), 395-416.
doi: 10.1007/BF00121681. |
[7] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs, Journal of Industrial and Management Optimization, 8 (2012), 271-283.
doi: 10.3934/jimo.2012.8.271. |
[8] |
G. Wang and T. C. E. Cheng, Heuristics for two-machine no-wait flowshop scheduling with an availability constraint, Information Processing Letters, 80 (2001), 305-309.
doi: 10.1016/S0020-0190(01)00181-8. |
[9] |
D. H. Xu, Z. M. Cheng, Y. Q. Yin and H. X. Li, Makespan minimization for two parallel machines scheduling with a periodic availability constraint, Computer & Operations Research, 36 (2009), 1809-1812.
doi: 10.1016/j.cor.2008.05.001. |
[10] |
M. Y. Yue, A simple proof of the inequality $FFD(L)\leq \frac{11}{9}OPT(L)+1,\forall L$ for the FFD Bin-Packing algorithm, Acta Mathematics Application Sinica, 7 (1991), 321-331.
doi: 10.1007/BF02009683. |
show all references
References:
[1] |
T. C. E. Cheng and G. Wang, An improved heuristic for two-machine flowshop scheduling with an availability constraint, Operation Research Letters, 26 (2000), 223-229.
doi: 10.1016/S0167-6377(00)00033-X. |
[2] |
R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics, 17 (1969), 416-429.
doi: 10.1137/0117039. |
[3] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan, Computer & Operations Research, 34 (2007), 1764-1770.
doi: 10.1016/j.cor.2005.05.034. |
[4] |
C. J. Liao, D. L. Shyur and C. H. Lin, Makespan minimization for two parallel machines with an availability constraint, European journal of operational Research, 160 (2005), 445-456.
doi: 10.1016/j.ejor.2003.08.034. |
[5] |
C. J. Liao and W. J. Chen, Single-machine scheduling with periodic maintenance and nonresumable jobs, Computers & operations Research, 30 (2003), 1335-1347.
doi: 10.1016/S0305-0548(02)00074-6. |
[6] |
C. Y. Lee, Machine scheduling with an availability constraint, Journal of Global optimization, 9 (1996), 395-416.
doi: 10.1007/BF00121681. |
[7] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs, Journal of Industrial and Management Optimization, 8 (2012), 271-283.
doi: 10.3934/jimo.2012.8.271. |
[8] |
G. Wang and T. C. E. Cheng, Heuristics for two-machine no-wait flowshop scheduling with an availability constraint, Information Processing Letters, 80 (2001), 305-309.
doi: 10.1016/S0020-0190(01)00181-8. |
[9] |
D. H. Xu, Z. M. Cheng, Y. Q. Yin and H. X. Li, Makespan minimization for two parallel machines scheduling with a periodic availability constraint, Computer & Operations Research, 36 (2009), 1809-1812.
doi: 10.1016/j.cor.2008.05.001. |
[10] |
M. Y. Yue, A simple proof of the inequality $FFD(L)\leq \frac{11}{9}OPT(L)+1,\forall L$ for the FFD Bin-Packing algorithm, Acta Mathematics Application Sinica, 7 (1991), 321-331.
doi: 10.1007/BF02009683. |
[1] |
Binghai Zhou, Yuanrui Lei, Shi Zong. Lagrangian relaxation algorithm for the truck scheduling problem with products time window constraint in multi-door cross-dock. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021151 |
[2] |
Ganggang Li, Xiwen Lu, Peihai Liu. The coordination of single-machine scheduling with availability constraints and delivery. Journal of Industrial and Management Optimization, 2016, 12 (2) : 757-770. doi: 10.3934/jimo.2016.12.757 |
[3] |
Jian Xiong, Yingwu Chen, Zhongbao Zhou. Resilience analysis for project scheduling with renewable resource constraint and uncertain activity durations. Journal of Industrial and Management Optimization, 2016, 12 (2) : 719-737. doi: 10.3934/jimo.2016.12.719 |
[4] |
Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial and Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185 |
[5] |
Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Constraint algorithm for singular field theories in the k-cosymplectic framework. Journal of Geometric Mechanics, 2020, 12 (1) : 1-23. doi: 10.3934/jgm.2020002 |
[6] |
Xin Sun, Dachuan Xu, Dongmei Zhang, Yang Zhou. An adaptive algorithm for maximization of non-submodular function with a matroid constraint. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022031 |
[7] |
Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391 |
[8] |
Jingwen Zhang, Wanjun Liu, Wanlin Liu. An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers. Journal of Industrial and Management Optimization, 2022, 18 (1) : 1-24. doi: 10.3934/jimo.2020140 |
[9] |
Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Erratum: Constraint algorithm for singular field theories in the $ k $-cosymplectic framework. Journal of Geometric Mechanics, 2021, 13 (2) : 273-275. doi: 10.3934/jgm.2021007 |
[10] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial and Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[11] |
Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial and Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269 |
[12] |
Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. Vega-Mejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2943-2969. doi: 10.3934/jimo.2019088 |
[13] |
Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (2) : 703-717. doi: 10.3934/jimo.2016.12.703 |
[14] |
Ling Lin, Dong He, Zhiyi Tan. Bounds on delay start LPT algorithm for scheduling on two identical machines in the $l_p$ norm. Journal of Industrial and Management Optimization, 2008, 4 (4) : 817-826. doi: 10.3934/jimo.2008.4.817 |
[15] |
Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial and Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243 |
[16] |
Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1801-1834. doi: 10.3934/jimo.2019030 |
[17] |
Ran Ma, Jiping Tao. An improved 2.11-competitive algorithm for online scheduling on parallel machines to minimize total weighted completion time. Journal of Industrial and Management Optimization, 2018, 14 (2) : 497-510. doi: 10.3934/jimo.2017057 |
[18] |
Xiaoxiao Yuan, Jing Liu, Xingxing Hao. A moving block sequence-based evolutionary algorithm for resource investment project scheduling problems. Big Data & Information Analytics, 2017, 2 (1) : 39-58. doi: 10.3934/bdia.2017007 |
[19] |
Ran Ma, Lu Zhang, Yuzhong Zhang. A best possible algorithm for an online scheduling problem with position-based learning effect. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021144 |
[20] |
Kathryn Haymaker, Beth Malmskog, Gretchen L. Matthews. Locally recoverable codes with availability t≥2 from fiber products of curves. Advances in Mathematics of Communications, 2018, 12 (2) : 317-336. doi: 10.3934/amc.2018020 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]