- Previous Article
- JIMO Home
- This Issue
-
Next Article
Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps
Two-machine scheduling with periodic availability constraints to minimize makespan
1. | Department of Mathematics, School of Science, East China University of Science and Technology, Shanghai 200237, China, China |
References:
[1] |
T. C. E. Cheng and G. Wang, An improved heuristic for two-machine flowshop scheduling with an availability constraint,, Operation Research Letters, 26 (2000), 223.
doi: 10.1016/S0167-6377(00)00033-X. |
[2] |
R. L. Graham, Bounds on multiprocessing timing anomalies,, SIAM Journal on Applied Mathematics, 17 (1969), 416.
doi: 10.1137/0117039. |
[3] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan,, Computer & Operations Research, 34 (2007), 1764.
doi: 10.1016/j.cor.2005.05.034. |
[4] |
C. J. Liao, D. L. Shyur and C. H. Lin, Makespan minimization for two parallel machines with an availability constraint,, European journal of operational Research, 160 (2005), 445.
doi: 10.1016/j.ejor.2003.08.034. |
[5] |
C. J. Liao and W. J. Chen, Single-machine scheduling with periodic maintenance and nonresumable jobs,, Computers & operations Research, 30 (2003), 1335.
doi: 10.1016/S0305-0548(02)00074-6. |
[6] |
C. Y. Lee, Machine scheduling with an availability constraint,, Journal of Global optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[7] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271.
doi: 10.3934/jimo.2012.8.271. |
[8] |
G. Wang and T. C. E. Cheng, Heuristics for two-machine no-wait flowshop scheduling with an availability constraint,, Information Processing Letters, 80 (2001), 305.
doi: 10.1016/S0020-0190(01)00181-8. |
[9] |
D. H. Xu, Z. M. Cheng, Y. Q. Yin and H. X. Li, Makespan minimization for two parallel machines scheduling with a periodic availability constraint,, Computer & Operations Research, 36 (2009), 1809.
doi: 10.1016/j.cor.2008.05.001. |
[10] |
M. Y. Yue, A simple proof of the inequality $FFD(L)\leq \frac{11}{9}OPT(L)+1,\forall L$ for the FFD Bin-Packing algorithm,, Acta Mathematics Application Sinica, 7 (1991), 321.
doi: 10.1007/BF02009683. |
show all references
References:
[1] |
T. C. E. Cheng and G. Wang, An improved heuristic for two-machine flowshop scheduling with an availability constraint,, Operation Research Letters, 26 (2000), 223.
doi: 10.1016/S0167-6377(00)00033-X. |
[2] |
R. L. Graham, Bounds on multiprocessing timing anomalies,, SIAM Journal on Applied Mathematics, 17 (1969), 416.
doi: 10.1137/0117039. |
[3] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan,, Computer & Operations Research, 34 (2007), 1764.
doi: 10.1016/j.cor.2005.05.034. |
[4] |
C. J. Liao, D. L. Shyur and C. H. Lin, Makespan minimization for two parallel machines with an availability constraint,, European journal of operational Research, 160 (2005), 445.
doi: 10.1016/j.ejor.2003.08.034. |
[5] |
C. J. Liao and W. J. Chen, Single-machine scheduling with periodic maintenance and nonresumable jobs,, Computers & operations Research, 30 (2003), 1335.
doi: 10.1016/S0305-0548(02)00074-6. |
[6] |
C. Y. Lee, Machine scheduling with an availability constraint,, Journal of Global optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[7] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271.
doi: 10.3934/jimo.2012.8.271. |
[8] |
G. Wang and T. C. E. Cheng, Heuristics for two-machine no-wait flowshop scheduling with an availability constraint,, Information Processing Letters, 80 (2001), 305.
doi: 10.1016/S0020-0190(01)00181-8. |
[9] |
D. H. Xu, Z. M. Cheng, Y. Q. Yin and H. X. Li, Makespan minimization for two parallel machines scheduling with a periodic availability constraint,, Computer & Operations Research, 36 (2009), 1809.
doi: 10.1016/j.cor.2008.05.001. |
[10] |
M. Y. Yue, A simple proof of the inequality $FFD(L)\leq \frac{11}{9}OPT(L)+1,\forall L$ for the FFD Bin-Packing algorithm,, Acta Mathematics Application Sinica, 7 (1991), 321.
doi: 10.1007/BF02009683. |
[1] |
Ganggang Li, Xiwen Lu, Peihai Liu. The coordination of single-machine scheduling with availability constraints and delivery. Journal of Industrial & Management Optimization, 2016, 12 (2) : 757-770. doi: 10.3934/jimo.2016.12.757 |
[2] |
Jian Xiong, Yingwu Chen, Zhongbao Zhou. Resilience analysis for project scheduling with renewable resource constraint and uncertain activity durations. Journal of Industrial & Management Optimization, 2016, 12 (2) : 719-737. doi: 10.3934/jimo.2016.12.719 |
[3] |
Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial & Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185 |
[4] |
Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Constraint algorithm for singular field theories in the k-cosymplectic framework. Journal of Geometric Mechanics, 2020, 12 (1) : 1-23. doi: 10.3934/jgm.2020002 |
[5] |
Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391 |
[6] |
Jingwen Zhang, Wanjun Liu, Wanlin Liu. An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020140 |
[7] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[8] |
Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial & Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269 |
[9] |
Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. Vega-Mejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2943-2969. doi: 10.3934/jimo.2019088 |
[10] |
Ling Lin, Dong He, Zhiyi Tan. Bounds on delay start LPT algorithm for scheduling on two identical machines in the $l_p$ norm. Journal of Industrial & Management Optimization, 2008, 4 (4) : 817-826. doi: 10.3934/jimo.2008.4.817 |
[11] |
Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (2) : 703-717. doi: 10.3934/jimo.2016.12.703 |
[12] |
Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial & Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243 |
[13] |
Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1801-1834. doi: 10.3934/jimo.2019030 |
[14] |
Ran Ma, Jiping Tao. An improved 2.11-competitive algorithm for online scheduling on parallel machines to minimize total weighted completion time. Journal of Industrial & Management Optimization, 2018, 14 (2) : 497-510. doi: 10.3934/jimo.2017057 |
[15] |
Xiaoxiao Yuan, Jing Liu, Xingxing Hao. A moving block sequence-based evolutionary algorithm for resource investment project scheduling problems. Big Data & Information Analytics, 2017, 2 (1) : 39-58. doi: 10.3934/bdia.2017007 |
[16] |
Michel Lavrauw, Geertrui Van de Voorde. Locally repairable codes with high availability based on generalised quadrangles. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020099 |
[17] |
Kathryn Haymaker, Beth Malmskog, Gretchen L. Matthews. Locally recoverable codes with availability t≥2 from fiber products of curves. Advances in Mathematics of Communications, 2018, 12 (2) : 317-336. doi: 10.3934/amc.2018020 |
[18] |
Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 |
[19] |
Yuzhong Zhang, Chunsong Bai, Qingguo Bai, Jianteng Xu. Duplicating in batch scheduling. Journal of Industrial & Management Optimization, 2007, 3 (4) : 685-692. doi: 10.3934/jimo.2007.3.685 |
[20] |
Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]