July  2015, 11(3): 733-746. doi: 10.3934/jimo.2015.11.733

An inexact semismooth Newton method for variational inequality with symmetric cone constraints

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, China

2. 

Information and Engineering College, Dalian University, Dalian 116622, China

Received  September 2013 Revised  June 2014 Published  October 2014

In this paper, we consider using the inexact nonsmooth Newton method to efficiently solve the symmetric cone constrained variational inequality (VISCC) problem. It red provides a unified framework for dealing with the variational inequality with nonlinear constraints, variational inequality with the second-order cone constraints, and the variational inequality with semidefinite cone constraints. We get convergence of the above method and apply the results to three special types symmetric cones.
Citation: Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733
References:
[1]

S. Bi, S. Pan and J. S. Chen, The same growth of FB and NR symmetric cone complementarity functions,, Optimization Letters, 6 (2012), 153.  doi: 10.1007/s11590-010-0257-z.  Google Scholar

[2]

S. Chen, L. P. Pang, F. F. Guo and Z. Q. Xia, Stochastic methods based on Newton method to the stochastic variational inequality problem with constraint conditions,, Mathematical and Computer Modelling, 55 (2012), 779.  doi: 10.1016/j.mcm.2011.09.003.  Google Scholar

[3]

X. D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems,, Computational Optimization and Applications, 25 (2003), 39.  doi: 10.1023/A:1022996819381.  Google Scholar

[4]

F. Facchinei, A. Fischer, C. Kanzow and J. M. Peng, A simply constrained optimization reformulation of KKT systems arising from variational inequalities,, Applied Mathematics and Optimization, 40 (1999), 19.  doi: 10.1007/s002459900114.  Google Scholar

[5]

F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems,, Vol. II. Springer Series in Operations Research. Springer-Verlag, (2003).   Google Scholar

[6]

J. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford: Clarendon Press, (1994).   Google Scholar

[7]

M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order-cone complementarity problems,, SIAM Journal on optimization, 12 (2002), 436.  doi: 10.1137/S1052623400380365.  Google Scholar

[8]

M. S. Gowda, R. Sznajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras,, Linear Algebra and Its Applications, 393 (2004), 203.  doi: 10.1016/j.laa.2004.03.028.  Google Scholar

[9]

P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations,, Acta Mathematica, 115 (1966), 271.  doi: 10.1007/BF02392210.  Google Scholar

[10]

S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems,, SIAM Journal on Optimization, 15 (2005), 593.  doi: 10.1137/S1052623403421516.  Google Scholar

[11]

L. Kong and Q. Meng, A semismooth Newton method for nonlinear symmetric cone programming,, Mathematical Methods of Operations Research, 76 (2012), 129.  doi: 10.1007/s00186-012-0393-6.  Google Scholar

[12]

L. Kong, J. Sun and N. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems,, SIAM Journal on Optimization, 19 (2008), 1028.  doi: 10.1137/060676775.  Google Scholar

[13]

J. Lions and G. Stampacchia, Variational inequalities,, Communications on Pure and Applied Mathematics, 20 (1967), 493.  doi: 10.1002/cpa.3160200302.  Google Scholar

[14]

L. Liu, S. Liu and H. Liu, A predictor-corrector smoothing Newton method for symmetric cone complementarity problems,, Applied Mathematics and Computation, 217 (2010), 2989.  doi: 10.1016/j.amc.2010.08.032.  Google Scholar

[15]

O. G. Mancino and G. Stampacchia, Convex programming and variational inequalities,, Journal of Optimization Theory and Applications, 9 (1972), 3.  doi: 10.1007/BF00932801.  Google Scholar

[16]

S. Pan, Y. L. Chang and J. S. Chen, Stationary point conditions for the FB merit function associated with symmetric cones,, Operations Research Letters, 38 (2010), 372.  doi: 10.1016/j.orl.2010.07.011.  Google Scholar

[17]

S. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions,, Computational Optimization and Applications, 45 (2010), 59.  doi: 10.1007/s10589-008-9166-9.  Google Scholar

[18]

L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,, Mathematics of operations research, 18 (1993), 227.  doi: 10.1287/moor.18.1.227.  Google Scholar

[19]

L. Qi and J. Sun, A nonsmooth version of Newton's method,, Mathematical programming, 58 (1993), 353.  doi: 10.1007/BF01581275.  Google Scholar

[20]

D. Sun and J. Sun, Löwner's operator and spectral functions in Euclidean Jordan algebras,, Mathematics of Operations Research, 33 (2008), 421.  doi: 10.1287/moor.1070.0300.  Google Scholar

[21]

J. Sun, J. S. Chen and C. H. Ko, Neural networks for solving second-order cone constrained variational inequality problem,, Computational Optimization and Applications, 51 (2012), 623.  doi: 10.1007/s10589-010-9359-x.  Google Scholar

[22]

J. Zhang and K. Zhang, An inexact smoothing method for the monotone complementarity problem over symmetric cones,, Optimization Methods and Software, 27 (2012), 445.  doi: 10.1080/10556788.2010.534164.  Google Scholar

show all references

References:
[1]

S. Bi, S. Pan and J. S. Chen, The same growth of FB and NR symmetric cone complementarity functions,, Optimization Letters, 6 (2012), 153.  doi: 10.1007/s11590-010-0257-z.  Google Scholar

[2]

S. Chen, L. P. Pang, F. F. Guo and Z. Q. Xia, Stochastic methods based on Newton method to the stochastic variational inequality problem with constraint conditions,, Mathematical and Computer Modelling, 55 (2012), 779.  doi: 10.1016/j.mcm.2011.09.003.  Google Scholar

[3]

X. D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems,, Computational Optimization and Applications, 25 (2003), 39.  doi: 10.1023/A:1022996819381.  Google Scholar

[4]

F. Facchinei, A. Fischer, C. Kanzow and J. M. Peng, A simply constrained optimization reformulation of KKT systems arising from variational inequalities,, Applied Mathematics and Optimization, 40 (1999), 19.  doi: 10.1007/s002459900114.  Google Scholar

[5]

F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems,, Vol. II. Springer Series in Operations Research. Springer-Verlag, (2003).   Google Scholar

[6]

J. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford: Clarendon Press, (1994).   Google Scholar

[7]

M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order-cone complementarity problems,, SIAM Journal on optimization, 12 (2002), 436.  doi: 10.1137/S1052623400380365.  Google Scholar

[8]

M. S. Gowda, R. Sznajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras,, Linear Algebra and Its Applications, 393 (2004), 203.  doi: 10.1016/j.laa.2004.03.028.  Google Scholar

[9]

P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations,, Acta Mathematica, 115 (1966), 271.  doi: 10.1007/BF02392210.  Google Scholar

[10]

S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems,, SIAM Journal on Optimization, 15 (2005), 593.  doi: 10.1137/S1052623403421516.  Google Scholar

[11]

L. Kong and Q. Meng, A semismooth Newton method for nonlinear symmetric cone programming,, Mathematical Methods of Operations Research, 76 (2012), 129.  doi: 10.1007/s00186-012-0393-6.  Google Scholar

[12]

L. Kong, J. Sun and N. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems,, SIAM Journal on Optimization, 19 (2008), 1028.  doi: 10.1137/060676775.  Google Scholar

[13]

J. Lions and G. Stampacchia, Variational inequalities,, Communications on Pure and Applied Mathematics, 20 (1967), 493.  doi: 10.1002/cpa.3160200302.  Google Scholar

[14]

L. Liu, S. Liu and H. Liu, A predictor-corrector smoothing Newton method for symmetric cone complementarity problems,, Applied Mathematics and Computation, 217 (2010), 2989.  doi: 10.1016/j.amc.2010.08.032.  Google Scholar

[15]

O. G. Mancino and G. Stampacchia, Convex programming and variational inequalities,, Journal of Optimization Theory and Applications, 9 (1972), 3.  doi: 10.1007/BF00932801.  Google Scholar

[16]

S. Pan, Y. L. Chang and J. S. Chen, Stationary point conditions for the FB merit function associated with symmetric cones,, Operations Research Letters, 38 (2010), 372.  doi: 10.1016/j.orl.2010.07.011.  Google Scholar

[17]

S. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions,, Computational Optimization and Applications, 45 (2010), 59.  doi: 10.1007/s10589-008-9166-9.  Google Scholar

[18]

L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,, Mathematics of operations research, 18 (1993), 227.  doi: 10.1287/moor.18.1.227.  Google Scholar

[19]

L. Qi and J. Sun, A nonsmooth version of Newton's method,, Mathematical programming, 58 (1993), 353.  doi: 10.1007/BF01581275.  Google Scholar

[20]

D. Sun and J. Sun, Löwner's operator and spectral functions in Euclidean Jordan algebras,, Mathematics of Operations Research, 33 (2008), 421.  doi: 10.1287/moor.1070.0300.  Google Scholar

[21]

J. Sun, J. S. Chen and C. H. Ko, Neural networks for solving second-order cone constrained variational inequality problem,, Computational Optimization and Applications, 51 (2012), 623.  doi: 10.1007/s10589-010-9359-x.  Google Scholar

[22]

J. Zhang and K. Zhang, An inexact smoothing method for the monotone complementarity problem over symmetric cones,, Optimization Methods and Software, 27 (2012), 445.  doi: 10.1080/10556788.2010.534164.  Google Scholar

[1]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[2]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[3]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[7]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[8]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[9]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[10]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[11]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[12]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[13]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[17]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[18]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]