Citation: |
[1] |
S. Bi, S. Pan and J. S. Chen, The same growth of FB and NR symmetric cone complementarity functions, Optimization Letters, 6 (2012), 153-162.doi: 10.1007/s11590-010-0257-z. |
[2] |
S. Chen, L. P. Pang, F. F. Guo and Z. Q. Xia, Stochastic methods based on Newton method to the stochastic variational inequality problem with constraint conditions, Mathematical and Computer Modelling, 55 (2012), 779-784.doi: 10.1016/j.mcm.2011.09.003. |
[3] |
X. D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems, Computational Optimization and Applications, 25 (2003), 39-56.doi: 10.1023/A:1022996819381. |
[4] |
F. Facchinei, A. Fischer, C. Kanzow and J. M. Peng, A simply constrained optimization reformulation of KKT systems arising from variational inequalities, Applied Mathematics and Optimization, 40 (1999), 19-37.doi: 10.1007/s002459900114. |
[5] |
F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Vol. II. Springer Series in Operations Research. Springer-Verlag, New York, 2003. |
[6] |
J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford: Clarendon Press, New York, 1994. |
[7] |
M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order-cone complementarity problems, SIAM Journal on optimization, 12 (2002), 436-460.doi: 10.1137/S1052623400380365. |
[8] |
M. S. Gowda, R. Sznajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra and Its Applications, 393 (2004), 203-232.doi: 10.1016/j.laa.2004.03.028. |
[9] |
P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Mathematica, 115 (1966), 271-310.doi: 10.1007/BF02392210. |
[10] |
S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM Journal on Optimization, 15 (2005), 593-615.doi: 10.1137/S1052623403421516. |
[11] |
L. Kong and Q. Meng, A semismooth Newton method for nonlinear symmetric cone programming, Mathematical Methods of Operations Research, 76 (2012), 129-145.doi: 10.1007/s00186-012-0393-6. |
[12] |
L. Kong, J. Sun and N. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems, SIAM Journal on Optimization, 19 (2008), 1028-1047.doi: 10.1137/060676775. |
[13] |
J. Lions and G. Stampacchia, Variational inequalities, Communications on Pure and Applied Mathematics, 20 (1967), 493-519.doi: 10.1002/cpa.3160200302. |
[14] |
L. Liu, S. Liu and H. Liu, A predictor-corrector smoothing Newton method for symmetric cone complementarity problems, Applied Mathematics and Computation, 217 (2010), 2989-2999.doi: 10.1016/j.amc.2010.08.032. |
[15] |
O. G. Mancino and G. Stampacchia, Convex programming and variational inequalities, Journal of Optimization Theory and Applications, 9 (1972), 3-23.doi: 10.1007/BF00932801. |
[16] |
S. Pan, Y. L. Chang and J. S. Chen, Stationary point conditions for the FB merit function associated with symmetric cones, Operations Research Letters, 38 (2010), 372-377.doi: 10.1016/j.orl.2010.07.011. |
[17] |
S. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions, Computational Optimization and Applications, 45 (2010), 59-88.doi: 10.1007/s10589-008-9166-9. |
[18] |
L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Mathematics of operations research, 18 (1993), 227-244.doi: 10.1287/moor.18.1.227. |
[19] |
L. Qi and J. Sun, A nonsmooth version of Newton's method, Mathematical programming, 58 (1993), 353-367.doi: 10.1007/BF01581275. |
[20] |
D. Sun and J. Sun, Löwner's operator and spectral functions in Euclidean Jordan algebras, Mathematics of Operations Research, 33 (2008), 421-445.doi: 10.1287/moor.1070.0300. |
[21] |
J. Sun, J. S. Chen and C. H. Ko, Neural networks for solving second-order cone constrained variational inequality problem, Computational Optimization and Applications, 51 (2012), 623-648.doi: 10.1007/s10589-010-9359-x. |
[22] |
J. Zhang and K. Zhang, An inexact smoothing method for the monotone complementarity problem over symmetric cones, Optimization Methods and Software, 27 (2012), 445-459.doi: 10.1080/10556788.2010.534164. |