July  2015, 11(3): 747-762. doi: 10.3934/jimo.2015.11.747

Optimizing multi-objective decision making having qualitative evaluation

1. 

PhD. Student of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

2. 

Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Received  November 2012 Revised  July 2014 Published  October 2014

We develop a ranking process for multi-objective decision making. For optimizing the multi-objective problem having both quantitative and qualitative objectives, weight assessment is important to convert the problem into the corresponding single objective problem. Therefore, a ranking process is proposed to simultaneously obtain the objective weights and the evaluation of alternatives with multiple objectives. Several new concepts are developed to handle the dynamism in distance computation and ranking of decisions in a multi-objective model having qualitative evaluations. The proposed process is illustrated in a numerical example.
Citation: Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial and Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747
References:
[1]

M. A. Badri, A. K. Mortagy and C. A. Alsyed, A multiobjective model for locating fire stations, European Journal of Operational Research, 110 (1998), 243-260.

[2]

C. Briggs and P. Little, Impacts of organizational culture and personality traits on decision-making in technical organizations, Systems Engineering, 11 (2008), 15-26.

[3]

V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology, Dover, New York, USA, 2008.

[4]

J. Daniels, P. W. Werner and T. Bahill, Quantitative methods for tradeoff analysis, Systems Engineering, 4 (2001), 190-212.

[5]

M. H. DeGroot, Optimal Statistical Decisions, McGraw-Hill, New York, USA, 1970.

[6]

R. Y. Dicdican and Y. Y. Haimes, Relating multiobjective decision trees to the multiobjective risk impact analysis method, Systems Engineering, 8 (2005), 95-108.

[7]

M. Ehrgott and X. Gandibleaux, (Editors), Multiple criteria optimization: State of the Art Annotated Bibliographic Surveys, Springer, New York, 2002.

[8]

A. O. Esogbue and R. E. Bellman, Fuzzy dynamic programming and its extensions, TIMS/Studies Management Sci., 20 (1984), 147-167.

[9]

H. I. Frohwein, J. H. Lambert, Y. Y. Haimes and L. A. Schiff, Multicriteria framework to aid comparison of roadway improvement projects, J Transportation Engineering, 125 (1999), 224-230.

[10]

K. Golabi, Selecting a group of dissimilar projects for funding, IEEE Transaction in Engineering Management, 34 (1987), 138-145.

[11]

S. D. Guikema and M. W. Milke, Sensitivity analysis for multi-attribute project selection problems, Civil Engineering Environmental Systems, 20 (2003), 143-162.

[12]

M. J. Hodgson, K. E. Rosing and A. L. G. Storrier, Testing a bicriterion location-allocation model with real world network traffic: The case of Edmonton, Canada, Multicriteria Analysis, Climaco, J. (Editor), Springer, Berlin, (1997),484-495.

[13]

M. L. Hussein and M. A. Abo-Sinna, Decomposition of multi-objective programming problems by hybrid fuzzy dynamic programming, Fuzzy Sets Systems, 60 (1993), 25-32. doi: 10.1016/0165-0114(93)90286-Q.

[14]

M. L. Hussein and M. A. Abo-Sinna, A fuzzy dynamic approach to the multicriteria resource allocation problem, Fuzzy Sets Systems, 69 (1995), 115-124. doi: 10.1016/0165-0114(94)00231-U.

[15]

J. Kacprzyk, Multistage Fuzzy Control, Wiley, Chichester, USA, 1997.

[16]

J. Kacprzyk and A. O. Esogbue, Fuzzy dynamic programming: Main developments and applications, Fuzzy Sets Systems, 81 (1996), 31-45. doi: 10.1016/0165-0114(95)00239-1.

[17]

J. Kacprzyk and L. Sugianto, Multistage fuzzy control involving objective and subjective aspects, in L.C. Jain, R.K. Jain (Eds.), Proceedings of the Second International Conference on Knowledge Based Intelligent Electronic Systems, Adelaide, Australia, (1998), 564-573.

[18]

S. Kullback, Information Theory and Statistics, John Wiley and Sons, NY, 1959.

[19]

S. Kullback and R. A. Leibler, On Information and Sufficiency, Annals of Mathematical Statistics, 22 (1951), 79-86. doi: 10.1214/aoms/1177729694.

[20]

J. H. Lambert, J. A. Baker and K. D. Peterson, Decision aid for allocation of transport funds to guardrails, Accident Anal Prevention, 35 (2003), 47-57.

[21]

J. H. Lambert, Y. Y. Haimes, D. Li, R. M. Schoof and V. Tulsiani, Identification, ranking and management of risks in a major systems acquisition, Reliability Engineering and Systems Safety, 72 (2001), 315-325.

[22]

J. H. Lambert, N. N. Joshi, K. D. Peterson and S. M. Wadie, Coordination and diversification of investments in multimodal transportation, Public Works Management Policy, 11 (2007), 250-265.

[23]

J. H. Lambert, K. A. Peterson and N. N. Joshi, Synthesis of quantitative and qualitative evidence for risk-based analysis of highway projects, Accident Anal Prevention, 38 (2006), 925-935.

[24]

J. H. Lambert, K. D. Peterson, S. M. Wadie and M. W. Farrington, Development of a methodology to coordinate and prioritize multimodal investment networks, Virginia Transportation Research Council Publication, Charlottesville, VA, Vol. 5, 2005.

[25]

D. B. Lee, Methods for evaluation of transportation projects in the USA, Transportation Policy, 7 (2000), 41-50.

[26]

L. M. Meade and A. Presley, R and D project selection using the analytic process, IEEE Transaction in Engineering Management, 49 (2002), 59-66.

[27]

D. A. Niemeier, Z. B. Zabinsky, Z. Zeng and G. S. Rutherford, Optimization models for transportation project programming process, Journal of Transportation Engineering, 121 (1995), 14-26.

[28]

G. S. Parnell, R. E. Metzger, J. Merrick and R. Eiler, Multiobjective decision analysis of theater missile defense architectures, Systems Engineering, 4 (2001), 24-34.

[29]

M. Sanchez, N. Agell and G. Ormazabal, Multiple-criteria evaluation for value management in civil engineering, Journal of Management Engineering, 21 (2005), 131-137.

[30]

J. S. Shang, Y. Tjader and Y. Ding, A unified framework for multicriteria evaluation of transportation, IEEE Transaction in Engineering Management, 51 (2004), 300-313.

[31]

P. J. Smith, M. Shafi and H. Gao, Quick simulation: A review of importance sampling techniques in communication systems, IEEE J.Select.Areas Commun., 15 (1997), 597-613.

[32]

R. Srinivasan, Importance Sampling - Applications in Communications and Detection, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-05052-1.

[33]

J. L. Tsang, J. H. Lambert and R. C. Patev, Multiple-criteria decision making in the design of innovative lock walls for barge impact: Phase 2, implementation methodologies, ERDC/ITL TR-02-5, ERDC Vicksburg Publications, Innovations for Navigation Projects Research Program, US Army Engineer Research and Development Center, Vicksburg, MS, 2002.

[34]

C. R. Weisbin, G. Rodriguez, A. Elfes and J. H. Smith, Toward a systematic approach for selection of NASA technology portfolios, 7 (2004), 285-302.

[35]

S. Y. Chen and G. T. Fu, Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems, Fuzzy Sets and Systems, 152 (2005), 499-312. doi: 10.1016/j.fss.2004.10.006.

[36]

J. Q. Wang and J. J. Li, Multi-criteria fuzzy decision-making method based on cross entropy and score functions, Expert Systems with Applications, 38 (2011), 1032-1038.

[37]

A. R. Jafarian-Moghaddam and K. Ghoseiri, Fuzzy dynamic multi-objective Data Envelopment Analysis model, Expert Systems with Applications, 38 (2011), 850-855.

show all references

References:
[1]

M. A. Badri, A. K. Mortagy and C. A. Alsyed, A multiobjective model for locating fire stations, European Journal of Operational Research, 110 (1998), 243-260.

[2]

C. Briggs and P. Little, Impacts of organizational culture and personality traits on decision-making in technical organizations, Systems Engineering, 11 (2008), 15-26.

[3]

V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology, Dover, New York, USA, 2008.

[4]

J. Daniels, P. W. Werner and T. Bahill, Quantitative methods for tradeoff analysis, Systems Engineering, 4 (2001), 190-212.

[5]

M. H. DeGroot, Optimal Statistical Decisions, McGraw-Hill, New York, USA, 1970.

[6]

R. Y. Dicdican and Y. Y. Haimes, Relating multiobjective decision trees to the multiobjective risk impact analysis method, Systems Engineering, 8 (2005), 95-108.

[7]

M. Ehrgott and X. Gandibleaux, (Editors), Multiple criteria optimization: State of the Art Annotated Bibliographic Surveys, Springer, New York, 2002.

[8]

A. O. Esogbue and R. E. Bellman, Fuzzy dynamic programming and its extensions, TIMS/Studies Management Sci., 20 (1984), 147-167.

[9]

H. I. Frohwein, J. H. Lambert, Y. Y. Haimes and L. A. Schiff, Multicriteria framework to aid comparison of roadway improvement projects, J Transportation Engineering, 125 (1999), 224-230.

[10]

K. Golabi, Selecting a group of dissimilar projects for funding, IEEE Transaction in Engineering Management, 34 (1987), 138-145.

[11]

S. D. Guikema and M. W. Milke, Sensitivity analysis for multi-attribute project selection problems, Civil Engineering Environmental Systems, 20 (2003), 143-162.

[12]

M. J. Hodgson, K. E. Rosing and A. L. G. Storrier, Testing a bicriterion location-allocation model with real world network traffic: The case of Edmonton, Canada, Multicriteria Analysis, Climaco, J. (Editor), Springer, Berlin, (1997),484-495.

[13]

M. L. Hussein and M. A. Abo-Sinna, Decomposition of multi-objective programming problems by hybrid fuzzy dynamic programming, Fuzzy Sets Systems, 60 (1993), 25-32. doi: 10.1016/0165-0114(93)90286-Q.

[14]

M. L. Hussein and M. A. Abo-Sinna, A fuzzy dynamic approach to the multicriteria resource allocation problem, Fuzzy Sets Systems, 69 (1995), 115-124. doi: 10.1016/0165-0114(94)00231-U.

[15]

J. Kacprzyk, Multistage Fuzzy Control, Wiley, Chichester, USA, 1997.

[16]

J. Kacprzyk and A. O. Esogbue, Fuzzy dynamic programming: Main developments and applications, Fuzzy Sets Systems, 81 (1996), 31-45. doi: 10.1016/0165-0114(95)00239-1.

[17]

J. Kacprzyk and L. Sugianto, Multistage fuzzy control involving objective and subjective aspects, in L.C. Jain, R.K. Jain (Eds.), Proceedings of the Second International Conference on Knowledge Based Intelligent Electronic Systems, Adelaide, Australia, (1998), 564-573.

[18]

S. Kullback, Information Theory and Statistics, John Wiley and Sons, NY, 1959.

[19]

S. Kullback and R. A. Leibler, On Information and Sufficiency, Annals of Mathematical Statistics, 22 (1951), 79-86. doi: 10.1214/aoms/1177729694.

[20]

J. H. Lambert, J. A. Baker and K. D. Peterson, Decision aid for allocation of transport funds to guardrails, Accident Anal Prevention, 35 (2003), 47-57.

[21]

J. H. Lambert, Y. Y. Haimes, D. Li, R. M. Schoof and V. Tulsiani, Identification, ranking and management of risks in a major systems acquisition, Reliability Engineering and Systems Safety, 72 (2001), 315-325.

[22]

J. H. Lambert, N. N. Joshi, K. D. Peterson and S. M. Wadie, Coordination and diversification of investments in multimodal transportation, Public Works Management Policy, 11 (2007), 250-265.

[23]

J. H. Lambert, K. A. Peterson and N. N. Joshi, Synthesis of quantitative and qualitative evidence for risk-based analysis of highway projects, Accident Anal Prevention, 38 (2006), 925-935.

[24]

J. H. Lambert, K. D. Peterson, S. M. Wadie and M. W. Farrington, Development of a methodology to coordinate and prioritize multimodal investment networks, Virginia Transportation Research Council Publication, Charlottesville, VA, Vol. 5, 2005.

[25]

D. B. Lee, Methods for evaluation of transportation projects in the USA, Transportation Policy, 7 (2000), 41-50.

[26]

L. M. Meade and A. Presley, R and D project selection using the analytic process, IEEE Transaction in Engineering Management, 49 (2002), 59-66.

[27]

D. A. Niemeier, Z. B. Zabinsky, Z. Zeng and G. S. Rutherford, Optimization models for transportation project programming process, Journal of Transportation Engineering, 121 (1995), 14-26.

[28]

G. S. Parnell, R. E. Metzger, J. Merrick and R. Eiler, Multiobjective decision analysis of theater missile defense architectures, Systems Engineering, 4 (2001), 24-34.

[29]

M. Sanchez, N. Agell and G. Ormazabal, Multiple-criteria evaluation for value management in civil engineering, Journal of Management Engineering, 21 (2005), 131-137.

[30]

J. S. Shang, Y. Tjader and Y. Ding, A unified framework for multicriteria evaluation of transportation, IEEE Transaction in Engineering Management, 51 (2004), 300-313.

[31]

P. J. Smith, M. Shafi and H. Gao, Quick simulation: A review of importance sampling techniques in communication systems, IEEE J.Select.Areas Commun., 15 (1997), 597-613.

[32]

R. Srinivasan, Importance Sampling - Applications in Communications and Detection, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-05052-1.

[33]

J. L. Tsang, J. H. Lambert and R. C. Patev, Multiple-criteria decision making in the design of innovative lock walls for barge impact: Phase 2, implementation methodologies, ERDC/ITL TR-02-5, ERDC Vicksburg Publications, Innovations for Navigation Projects Research Program, US Army Engineer Research and Development Center, Vicksburg, MS, 2002.

[34]

C. R. Weisbin, G. Rodriguez, A. Elfes and J. H. Smith, Toward a systematic approach for selection of NASA technology portfolios, 7 (2004), 285-302.

[35]

S. Y. Chen and G. T. Fu, Combining fuzzy iteration model with dynamic programming to solve multiobjective multistage decision making problems, Fuzzy Sets and Systems, 152 (2005), 499-312. doi: 10.1016/j.fss.2004.10.006.

[36]

J. Q. Wang and J. J. Li, Multi-criteria fuzzy decision-making method based on cross entropy and score functions, Expert Systems with Applications, 38 (2011), 1032-1038.

[37]

A. R. Jafarian-Moghaddam and K. Ghoseiri, Fuzzy dynamic multi-objective Data Envelopment Analysis model, Expert Systems with Applications, 38 (2011), 850-855.

[1]

Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3581-3602. doi: 10.3934/jimo.2020134

[2]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[3]

Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055

[4]

Gholam Hassan Shirdel, Somayeh Ramezani-Tarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial and Management Optimization, 2020, 16 (2) : 633-651. doi: 10.3934/jimo.2018171

[5]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[6]

Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001

[7]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[8]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[9]

Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088

[10]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[11]

Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1501-1519. doi: 10.3934/jimo.2018018

[12]

Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial and Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285

[13]

Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021208

[14]

Harish Garg, Dimple Rani. Multi-criteria decision making method based on Bonferroni mean aggregation operators of complex intuitionistic fuzzy numbers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2279-2306. doi: 10.3934/jimo.2020069

[15]

Adriel Cheng, Cheng-Chew Lim. Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial and Management Optimization, 2014, 10 (2) : 383-396. doi: 10.3934/jimo.2014.10.383

[16]

Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial and Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365

[17]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177

[18]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[19]

Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial and Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595

[20]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (3)

[Back to Top]