July  2015, 11(3): 763-777. doi: 10.3934/jimo.2015.11.763

Stability of a cyclic polling system with an adaptive mechanism

1. 

Department of Mathematics Education, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, South Korea

2. 

Department of Mathematics, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, South Korea

Received  September 2013 Revised  May 2014 Published  October 2014

We consider a single server cyclic polling system with multiple infinite-buffer queues where the server follows an adaptive mechanism: if a queue is empty at its polling moment the server will skip this queue in the next cycle. After being skipped, a queue is always visited in the next cycle. The service discipline in each queue is 1-limited. Using the fluid limit approach, we find the necessary and sufficient condition for the stability of such polling system.
Citation: Jeongsim Kim, Bara Kim. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial & Management Optimization, 2015, 11 (3) : 763-777. doi: 10.3934/jimo.2015.11.763
References:
[1]

E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems,, Queueing Systems, 11 (1992), 35.  doi: 10.1007/BF01159286.  Google Scholar

[2]

M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems,, Surveys in Operations Research and Management Science, 16 (2011), 67.  doi: 10.1016/j.sorms.2011.01.001.  Google Scholar

[3]

A. A. Borovkov and R. Schassberger, Ergodicity of a polling network,, Stochastic Processes and their Applications, 50 (1994), 253.  doi: 10.1016/0304-4149(94)90122-8.  Google Scholar

[4]

O. J. Boxma, J. Bruin and B. H. Fralix, Sojourn times in polling systems with various service disciplines,, Performance Evaluation, 66 (2009), 621.  doi: 10.1016/j.peva.2009.05.004.  Google Scholar

[5]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits,, Queueing Systems, 28 (1998), 7.  doi: 10.1023/A:1019182619288.  Google Scholar

[6]

N. Chernova, S. Foss and B. Kim, On the stability of a polling system with an adaptive service mechanism,, Annals of Operations Research, 198 (2012), 125.  doi: 10.1007/s10479-011-0963-7.  Google Scholar

[7]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models,, The Annals of Applied Probability, 5 (1995), 49.  doi: 10.1214/aoap/1177004828.  Google Scholar

[8]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models,, IEEE Transaction on Automatic Control, 40 (1995), 1889.  doi: 10.1109/9.471210.  Google Scholar

[9]

D. G. Down, On the stability of polling models with multiple servers,, Journal of Applied Probability, 35 (1998), 925.  doi: 10.1239/jap/1032438388.  Google Scholar

[10]

C. Fricker, M. R. Jaíbi, Monotonicity and stability of periodic polling models,, Queueing Systems, 15 (1994), 211.  doi: 10.1007/BF01189238.  Google Scholar

[11]

L. Georgiadis and W. Szpankowski, Stability of token passing rings,, Queueing Systems, 11 (1992), 7.  doi: 10.1007/BF01159285.  Google Scholar

[12]

H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization,, IEEE Transactions on Communications, 38 (1990), 1750.  doi: 10.1109/26.61446.  Google Scholar

[13]

L. Massouli, Stability of non-Markovian polling systems,, Queueing Systems, 21 (1995), 67.  doi: 10.1007/BF01158575.  Google Scholar

[14]

J. A. C. Resing, Polling systems and multitype branching processes,, Queueing Systems, 13 (1993), 409.  doi: 10.1007/BF01149263.  Google Scholar

[15]

A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks,, Problems of Information Transmission, 28 (1992), 199.   Google Scholar

[16]

Z. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals,, European Journal of Operational Research, 197 (2009), 188.  doi: 10.1016/j.ejor.2008.05.016.  Google Scholar

[17]

H. Takagi, Analysis of Polling Systems,, Performance Evaluation, 5 (1985).  doi: 10.1016/0166-5316(85)90016-1.  Google Scholar

[18]

V. Vishnevsky and O. Semenova, Adaptive dynamical polling in wireless networks,, Cybernetics and Information Technologies, 8 (2008), 3.   Google Scholar

[19]

V. Vishnevsky, A. N. Dudin, V. I. Klimenok and O. Semenova, Approximate method to study M/G/1-type polling system with adaptive polling mechanism,, Quality Technology & Quantitative Management, 9 (2012), 211.   Google Scholar

[20]

A. Wierman, E. M. M. Winands and O. J. Boxma, Scheduling in polling systems,, Performance Evaluation, 64 (2007), 1009.  doi: 10.1016/j.peva.2007.06.015.  Google Scholar

[21]

A. C. C. van Wijka, I. J. B. F. Adan, O. J. Boxma and A. Wierman, Fairness and efficiency for polling models with the $k$-gated service discipline,, Performance Evaluation, 69 (2012), 274.   Google Scholar

[22]

E. M. M. Winands, I. J. B. F. Adan, G. J. van Houtum and D. G. Down, A state-dependent polling model with $k$-limited service,, Probability in the Engineering and Informational Sciences, 23 (2009), 385.  doi: 10.1017/S0269964809000217.  Google Scholar

show all references

References:
[1]

E. Altman, P. Konstantopoulos and Z. Liu, Stability, monotonicity and invariant quantities in general polling systems,, Queueing Systems, 11 (1992), 35.  doi: 10.1007/BF01159286.  Google Scholar

[2]

M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems,, Surveys in Operations Research and Management Science, 16 (2011), 67.  doi: 10.1016/j.sorms.2011.01.001.  Google Scholar

[3]

A. A. Borovkov and R. Schassberger, Ergodicity of a polling network,, Stochastic Processes and their Applications, 50 (1994), 253.  doi: 10.1016/0304-4149(94)90122-8.  Google Scholar

[4]

O. J. Boxma, J. Bruin and B. H. Fralix, Sojourn times in polling systems with various service disciplines,, Performance Evaluation, 66 (2009), 621.  doi: 10.1016/j.peva.2009.05.004.  Google Scholar

[5]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits,, Queueing Systems, 28 (1998), 7.  doi: 10.1023/A:1019182619288.  Google Scholar

[6]

N. Chernova, S. Foss and B. Kim, On the stability of a polling system with an adaptive service mechanism,, Annals of Operations Research, 198 (2012), 125.  doi: 10.1007/s10479-011-0963-7.  Google Scholar

[7]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models,, The Annals of Applied Probability, 5 (1995), 49.  doi: 10.1214/aoap/1177004828.  Google Scholar

[8]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models,, IEEE Transaction on Automatic Control, 40 (1995), 1889.  doi: 10.1109/9.471210.  Google Scholar

[9]

D. G. Down, On the stability of polling models with multiple servers,, Journal of Applied Probability, 35 (1998), 925.  doi: 10.1239/jap/1032438388.  Google Scholar

[10]

C. Fricker, M. R. Jaíbi, Monotonicity and stability of periodic polling models,, Queueing Systems, 15 (1994), 211.  doi: 10.1007/BF01189238.  Google Scholar

[11]

L. Georgiadis and W. Szpankowski, Stability of token passing rings,, Queueing Systems, 11 (1992), 7.  doi: 10.1007/BF01159285.  Google Scholar

[12]

H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization,, IEEE Transactions on Communications, 38 (1990), 1750.  doi: 10.1109/26.61446.  Google Scholar

[13]

L. Massouli, Stability of non-Markovian polling systems,, Queueing Systems, 21 (1995), 67.  doi: 10.1007/BF01158575.  Google Scholar

[14]

J. A. C. Resing, Polling systems and multitype branching processes,, Queueing Systems, 13 (1993), 409.  doi: 10.1007/BF01149263.  Google Scholar

[15]

A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks,, Problems of Information Transmission, 28 (1992), 199.   Google Scholar

[16]

Z. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals,, European Journal of Operational Research, 197 (2009), 188.  doi: 10.1016/j.ejor.2008.05.016.  Google Scholar

[17]

H. Takagi, Analysis of Polling Systems,, Performance Evaluation, 5 (1985).  doi: 10.1016/0166-5316(85)90016-1.  Google Scholar

[18]

V. Vishnevsky and O. Semenova, Adaptive dynamical polling in wireless networks,, Cybernetics and Information Technologies, 8 (2008), 3.   Google Scholar

[19]

V. Vishnevsky, A. N. Dudin, V. I. Klimenok and O. Semenova, Approximate method to study M/G/1-type polling system with adaptive polling mechanism,, Quality Technology & Quantitative Management, 9 (2012), 211.   Google Scholar

[20]

A. Wierman, E. M. M. Winands and O. J. Boxma, Scheduling in polling systems,, Performance Evaluation, 64 (2007), 1009.  doi: 10.1016/j.peva.2007.06.015.  Google Scholar

[21]

A. C. C. van Wijka, I. J. B. F. Adan, O. J. Boxma and A. Wierman, Fairness and efficiency for polling models with the $k$-gated service discipline,, Performance Evaluation, 69 (2012), 274.   Google Scholar

[22]

E. M. M. Winands, I. J. B. F. Adan, G. J. van Houtum and D. G. Down, A state-dependent polling model with $k$-limited service,, Probability in the Engineering and Informational Sciences, 23 (2009), 385.  doi: 10.1017/S0269964809000217.  Google Scholar

[1]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[2]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[3]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[6]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[7]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[8]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[9]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[13]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[15]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[16]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[17]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[18]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[19]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[20]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]