• Previous Article
    Performance analysis of buffers with train arrivals and correlated output interruptions
  • JIMO Home
  • This Issue
  • Next Article
    On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations
July  2015, 11(3): 807-828. doi: 10.3934/jimo.2015.11.807

Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing

1. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

2. 

Department of Mathematical Sciences and Telecommunication Engineering Program, Korea Advanced Institute of Science and Technology, Daejeon

Received  September 2013 Revised  May 2014 Published  October 2014

In this paper, we consider a multi-channel cognitive radio network with multiple secondary users (SUs) and analyze the performance of users in the network. We assume primary users (PUs) adopt the automatic repeat request (ARQ) protocol at the medium access control layer. We have two main goals. Our first goal is to develop a cross-layer performance model of the cognitive radio network by considering the retransmission characteristics of the ARQ protocol and the interference between PUs and SUs due to imperfect channel sensing. Using the cross-layer performance model we analyze the throughput performance of SUs and the delay performance of PUs.
    Our second goal is to propose an optimal channel sensing method that maximizes the throughput performance of SUs while a given delay requirement of PUs is guaranteed. To this end, using our cross-layer performance model, we formulate an optimization problem and solve it to get an optimal channel sensing method that satisfies the design objectives. Numerical and simulation results are provided to validate our analysis and to investigate the performance of the optimal channel sensing method.
Citation: Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807
References:
[1]

S. Akin and M. C. Gursoy, Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning,, IEEE Trans. on Wireless Comm., 9 (2010), 3354.  doi: 10.1109/TWC.2010.092410.090751.  Google Scholar

[2]

I. F. Akyildiz, B. F. Lo and R. Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey,, Physical Communication, 4 (2011), 40.  doi: 10.1016/j.phycom.2010.12.003.  Google Scholar

[3]

C-S. Chang, Performance guarantees in communication networks,, Springer, (2000).   Google Scholar

[4]

C. Cormio and K. R. Chowdhury, A Survey on MAC Protocols for Cognitive Radio Networks,, Ad Hoc Networks, 7 (2009), 1315.  doi: 10.1016/j.adhoc.2009.01.002.  Google Scholar

[5]

F. F. Digham, M-S. Alouini and M. K. Simon, On the energy detection of unknown signals over fading channels,, IEEE Tran. on Comm., 55 (2007), 21.  doi: 10.1109/TCOMM.2006.887483.  Google Scholar

[6]

A. A. El-Sherif and K. J. Ray Liu, Joint design of spectrum sensing and channel access in cognitive radio networks,, IEEE Trans. Wireless Comm., 10 (2011), 1743.  doi: 10.1109/TWC.2011.032411.100131.  Google Scholar

[7]

Federal Communications Commission, Spectrum Policy Task Force,, Rep. ET Docket No. 02-135, (2002), 02.   Google Scholar

[8]

Federal Communications Commission, Notice of Proposed Rule Making and Order,, Rep. ET Docket No. 02-222, (2003), 02.   Google Scholar

[9]

G. U. Hwang and S. Roy, Design and analysis of optimal random access policies in cognitive radio networks,, IEEE Transactions on Comm., 60 (2012), 121.  doi: 10.1109/TCOMM.2011.112311.100702.  Google Scholar

[10]

S. C. Jha, M. M. Rashod and V. K. Bhargava, Medium access control in distributed cognitive radio networks,, IEEE Wireless Comm. Mag., 18 (2011), 41.  doi: 10.1109/MWC.2011.5999763.  Google Scholar

[11]

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory,, Prentice-Hall, (1998).   Google Scholar

[12]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Models,, SIAM, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[13]

W-Y. Lee and I. F. Akyildiz, Optimal Spectrum Sensing Framework for Cognitive Radio Networks,, IEEE Trans. on Wireless Comm., 7 (2008), 3845.  doi: 10.1109/T-WC.2008.070391.  Google Scholar

[14]

X. Li, Q. Zhao, X. Guan and L. Tong, Optimal cognitive access of markovian channels under tight collision constraints,, IEEE J. Selected Areas in Comm., 29 (2010), 1.  doi: 10.1109/ICC.2010.5502055.  Google Scholar

[15]

Y-C. Liang, Y. Zeng, E. C. Y. Peh and A. T. Hoang, Sensing-throughput tradeoff for cognitive radio networks,, IEEE Transactions on Wireless Comm., 7 (2008), 5330.  doi: 10.1109/TWC.2008.060869.  Google Scholar

[16]

S-Y. Lien, C-C. Tseng and K-C. Chen, Carrier sensing based multiple access protocols for cognitive radio networks,, Proc. IEEE ICC, (2008), 3208.  doi: 10.1109/ICC.2008.604.  Google Scholar

[17]

L. Ma, X. Han and C-C. Shen, Dynamic open spectrum sharing for wireless ad hoc networks,, Proc. IEEE DySPAN, (2005), 203.  doi: 10.1109/DYSPAN.2005.1542636.  Google Scholar

[18]

J. Mitola and G. Q. Maguire, Cognitive radio: Making software radios more personal,, IEEE Pers. Commun., 6 (1999), 13.  doi: 10.1109/98.788210.  Google Scholar

[19]

E. C. Y. Peh, Y-C. Liang, Y. L. Guan and Y. Zeng, Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view,, IEEE Trans. on Vech. Tech., 58 (2009), 5294.  doi: 10.1109/TVT.2009.2028030.  Google Scholar

[20]

S. M. Ross, Stochastic Processes,, John Willey & Sons, (1996).   Google Scholar

[21]

A. Singh, M. R. Bhatnagar and R. K. Mallik, Threshold optimization of finite sample based cognitive radio network,, NCC 2012, (2012), 1.  doi: 10.1109/NCC.2012.6176816.  Google Scholar

[22]

H. Su and X. Zhang, Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,, Journal on Selected Areas in Comm., 26 (2008), 118.  doi: 10.1109/JSAC.2008.080111.  Google Scholar

[23]

S. Wang, J. Zhang and L. Tong, Delay analysis for cognitive radio networks with random access: A fluid flow view,, Proc. 2010 IEEE INFOCOM, (2010), 1.  doi: 10.1109/INFCOM.2010.5461943.  Google Scholar

[24]

A. Wyglinski, M. Nekovee and Y. T. Hou, Cognitive Radio Communications and Networks: Principles and Practice,, Elsevier, (2009).   Google Scholar

[25]

M. Xu, and H. Li and X. Gan, Energy efficient sequential sensing for wideband multi-channel cognitive network,, Proc. IEEE ICC, (2011), 1.  doi: 10.1109/icc.2011.5962519.  Google Scholar

[26]

T. Yücek and H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications,, IEEE Comm. Surveys & Tutorials, 11 (2009), 116.  doi: 10.1109/SURV.2009.090109.  Google Scholar

[27]

Y. H. Zeng, Y.-C. Liang, A. T. Hoang and R. Zhang, A review on spectrum sensing for cognitive radio: Challenges and solutions,, EURASIP J. Advances Signal Process, 2010 (2010).  doi: 10.1155/2010/381465.  Google Scholar

[28]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589.  doi: 10.1109/JSAC.2007.070409.  Google Scholar

[29]

, Standard for Wireless Regional Area Networks (WRAN) - Specific requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and procedures for operation in the TV Bands,, The Institute of Electrical and Electronics Engineering, ().   Google Scholar

show all references

References:
[1]

S. Akin and M. C. Gursoy, Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning,, IEEE Trans. on Wireless Comm., 9 (2010), 3354.  doi: 10.1109/TWC.2010.092410.090751.  Google Scholar

[2]

I. F. Akyildiz, B. F. Lo and R. Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey,, Physical Communication, 4 (2011), 40.  doi: 10.1016/j.phycom.2010.12.003.  Google Scholar

[3]

C-S. Chang, Performance guarantees in communication networks,, Springer, (2000).   Google Scholar

[4]

C. Cormio and K. R. Chowdhury, A Survey on MAC Protocols for Cognitive Radio Networks,, Ad Hoc Networks, 7 (2009), 1315.  doi: 10.1016/j.adhoc.2009.01.002.  Google Scholar

[5]

F. F. Digham, M-S. Alouini and M. K. Simon, On the energy detection of unknown signals over fading channels,, IEEE Tran. on Comm., 55 (2007), 21.  doi: 10.1109/TCOMM.2006.887483.  Google Scholar

[6]

A. A. El-Sherif and K. J. Ray Liu, Joint design of spectrum sensing and channel access in cognitive radio networks,, IEEE Trans. Wireless Comm., 10 (2011), 1743.  doi: 10.1109/TWC.2011.032411.100131.  Google Scholar

[7]

Federal Communications Commission, Spectrum Policy Task Force,, Rep. ET Docket No. 02-135, (2002), 02.   Google Scholar

[8]

Federal Communications Commission, Notice of Proposed Rule Making and Order,, Rep. ET Docket No. 02-222, (2003), 02.   Google Scholar

[9]

G. U. Hwang and S. Roy, Design and analysis of optimal random access policies in cognitive radio networks,, IEEE Transactions on Comm., 60 (2012), 121.  doi: 10.1109/TCOMM.2011.112311.100702.  Google Scholar

[10]

S. C. Jha, M. M. Rashod and V. K. Bhargava, Medium access control in distributed cognitive radio networks,, IEEE Wireless Comm. Mag., 18 (2011), 41.  doi: 10.1109/MWC.2011.5999763.  Google Scholar

[11]

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory,, Prentice-Hall, (1998).   Google Scholar

[12]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Models,, SIAM, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[13]

W-Y. Lee and I. F. Akyildiz, Optimal Spectrum Sensing Framework for Cognitive Radio Networks,, IEEE Trans. on Wireless Comm., 7 (2008), 3845.  doi: 10.1109/T-WC.2008.070391.  Google Scholar

[14]

X. Li, Q. Zhao, X. Guan and L. Tong, Optimal cognitive access of markovian channels under tight collision constraints,, IEEE J. Selected Areas in Comm., 29 (2010), 1.  doi: 10.1109/ICC.2010.5502055.  Google Scholar

[15]

Y-C. Liang, Y. Zeng, E. C. Y. Peh and A. T. Hoang, Sensing-throughput tradeoff for cognitive radio networks,, IEEE Transactions on Wireless Comm., 7 (2008), 5330.  doi: 10.1109/TWC.2008.060869.  Google Scholar

[16]

S-Y. Lien, C-C. Tseng and K-C. Chen, Carrier sensing based multiple access protocols for cognitive radio networks,, Proc. IEEE ICC, (2008), 3208.  doi: 10.1109/ICC.2008.604.  Google Scholar

[17]

L. Ma, X. Han and C-C. Shen, Dynamic open spectrum sharing for wireless ad hoc networks,, Proc. IEEE DySPAN, (2005), 203.  doi: 10.1109/DYSPAN.2005.1542636.  Google Scholar

[18]

J. Mitola and G. Q. Maguire, Cognitive radio: Making software radios more personal,, IEEE Pers. Commun., 6 (1999), 13.  doi: 10.1109/98.788210.  Google Scholar

[19]

E. C. Y. Peh, Y-C. Liang, Y. L. Guan and Y. Zeng, Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view,, IEEE Trans. on Vech. Tech., 58 (2009), 5294.  doi: 10.1109/TVT.2009.2028030.  Google Scholar

[20]

S. M. Ross, Stochastic Processes,, John Willey & Sons, (1996).   Google Scholar

[21]

A. Singh, M. R. Bhatnagar and R. K. Mallik, Threshold optimization of finite sample based cognitive radio network,, NCC 2012, (2012), 1.  doi: 10.1109/NCC.2012.6176816.  Google Scholar

[22]

H. Su and X. Zhang, Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,, Journal on Selected Areas in Comm., 26 (2008), 118.  doi: 10.1109/JSAC.2008.080111.  Google Scholar

[23]

S. Wang, J. Zhang and L. Tong, Delay analysis for cognitive radio networks with random access: A fluid flow view,, Proc. 2010 IEEE INFOCOM, (2010), 1.  doi: 10.1109/INFCOM.2010.5461943.  Google Scholar

[24]

A. Wyglinski, M. Nekovee and Y. T. Hou, Cognitive Radio Communications and Networks: Principles and Practice,, Elsevier, (2009).   Google Scholar

[25]

M. Xu, and H. Li and X. Gan, Energy efficient sequential sensing for wideband multi-channel cognitive network,, Proc. IEEE ICC, (2011), 1.  doi: 10.1109/icc.2011.5962519.  Google Scholar

[26]

T. Yücek and H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications,, IEEE Comm. Surveys & Tutorials, 11 (2009), 116.  doi: 10.1109/SURV.2009.090109.  Google Scholar

[27]

Y. H. Zeng, Y.-C. Liang, A. T. Hoang and R. Zhang, A review on spectrum sensing for cognitive radio: Challenges and solutions,, EURASIP J. Advances Signal Process, 2010 (2010).  doi: 10.1155/2010/381465.  Google Scholar

[28]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589.  doi: 10.1109/JSAC.2007.070409.  Google Scholar

[29]

, Standard for Wireless Regional Area Networks (WRAN) - Specific requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and procedures for operation in the TV Bands,, The Institute of Electrical and Electronics Engineering, ().   Google Scholar

[1]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[2]

Sabyasachi Dey, Tapabrata Roy, Santanu Sarkar. Revisiting design principles of Salsa and ChaCha. Advances in Mathematics of Communications, 2019, 13 (4) : 689-704. doi: 10.3934/amc.2019041

[3]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[4]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[5]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[6]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[7]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[8]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[9]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[10]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[11]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[12]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[13]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[14]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[15]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[16]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[18]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[19]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[20]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]