• Previous Article
    Statistical process control optimization with variable sampling interval and nonlinear expected loss
  • JIMO Home
  • This Issue
  • Next Article
    Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved
January  2015, 11(1): 83-104. doi: 10.3934/jimo.2015.11.83

Optimization analysis of the machine repair problem with multiple vacations and working breakdowns

1. 

Department of Business Administration, National Formosa University, Huwei, Yunlin, 63201

Received  April 2013 Revised  December 2013 Published  May 2014

This paper investigates the M/M/1 warm-standby machine repair problem with multiple vacations and working breakdowns. We first apply a matrix-analytic method to obtain the steady-state probabilities. Next, we construct the total expected profit per unit time and formulate an optimization problem to find the maximum profit. The particle swarm optimization (PSO) algorithm is implemented to determine the optimal number of warm standbys and two variable service rates simultaneously at the optimal maximum profit. We compare the searching results of the PSO algorithm with those of Genetic algorithm (GA) and Exhaustive Search Method (ESM) to ensure the superior searching quality of the PSO algorithm. Sensitivity analysis with numerical illustrations is also provided to improve the design quality of system engineers.
Citation: Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83
References:
[1]

M. Clerc, Particle Swarm Optimization,, Translated from the 2005 French original, (2005).  doi: 10.1002/9780470612163.  Google Scholar

[2]

B. T. Doshi, Queueing systems with vacations-a Survey,, Queueing Systems, 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[3]

R. C. Eberhart and Y. Shi, Particle swarm optimization: Developments, applications and resources,, in Proceedings of IEEE International Conference on Evolutionary Computation, 1 (2001), 81.  doi: 10.1109/CEC.2001.934374.  Google Scholar

[4]

R. C. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementations,, Morgan Kaufmann, (2007).   Google Scholar

[5]

S. W. Fuhrmann and R. B. Cooper, Stochastic decompositions in the M/G/1 queue with generalize vacations,, Operations Research, 33 (1995), 1117.  doi: 10.1287/opre.33.5.1117.  Google Scholar

[6]

M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization,, John-Wiley & Sons, (2007).  doi: 10.1002/9780470172261.  Google Scholar

[7]

N. Gharbi and M. Ioualalen, Numerical investigation of finite-source multi server systems with different vacation policies,, Journal of Computational and Applied Mathematics, 234 (2010), 625.  doi: 10.1016/j.cam.2009.11.040.  Google Scholar

[8]

W. J. Gray, P. P. Wang and M. Scott, A vacation queueing model with service breakdowns,, Applied Mathematical Modelling, 24 (2000), 391.  doi: 10.1016/S0307-904X(99)00048-7.  Google Scholar

[9]

S. M. Gupta, N-policy queueing system with finite source and warm spares,, Journal of Operational Research Society of India, 36 (1999), 189.   Google Scholar

[10]

S. M. Gupta, Machine interference problem with warm spares, sever vacations and exhaustive service,, Performance Evaluation, 29 (1997), 195.   Google Scholar

[11]

L. Haque and M. J. Armstrong, A survey of the machine interference problem,, European Journal of Operational Research, 179 (2007), 469.  doi: 10.1016/j.ejor.2006.02.036.  Google Scholar

[12]

J. H. Holland, Adaptation in Natural and Artificial Systems,, An introductory analysis with applications to biology, (1975).   Google Scholar

[13]

M. Jain and R. S. Maheshwari, N-policy for a machine repair system with spares and reneging,, Applied Mathematical Modelling, 28 (2004), 513.  doi: 10.1016/j.apm.2003.10.013.  Google Scholar

[14]

J. Jia and S. Wu, A replacement policy for a repairable system with its repairman having multiple vacations,, Computers and Industrial Engineering, 57 (2009), 156.  doi: 10.1016/j.cie.2008.11.003.  Google Scholar

[15]

F. Karaesmen and S. M. Gupta, The finite GI/M/1 queue with server vacations,, Journal of the Operational Research Society, 47 (1996), 817.  doi: 10.2307/3010289.  Google Scholar

[16]

J. C. Ke, The optimal control of an M/G/1 queueing system with server vacations, startup and breakdowns,, Computers and Industrial Engineering, 44 (2003), 567.  doi: 10.1016/S0360-8352(02)00235-8.  Google Scholar

[17]

J. C. Ke, Vacation policies for machine interference problem with an unreliable server and state-dependent service rate,, Journal of the Chinese Institute of Engineers, 23 (2006), 100.   Google Scholar

[18]

J. C. Ke and C. H. Lin, Sensitivity analysis of machine repair problems in manufacturing systems with service interruptions,, Applied Mathematical Modelling, 32 (2008), 2087.  doi: 10.1016/j.apm.2007.07.004.  Google Scholar

[19]

J. C. Ke and C. H. Lin, A markov repairable system involving an imperfect service station with multiple vacations,, Asia Pacific Journal of Operational Research, 22 (2005), 555.  doi: 10.1142/S021759590500073X.  Google Scholar

[20]

J. C. Ke, C. H. Lin, H. I. Huang and Z. G. Zhang, An algorithm analysis of multi-server vacation model with service interruptions,, Computers and Industrial Engineering, 61 (2011), 1302.  doi: 10.1016/j.cie.2011.08.003.  Google Scholar

[21]

J. C. Ke and K. H. Wang, Cost analysis of the M/M/R machine repair problem with balking, reneging, and server breakdowns,, Journal of the Operational Research Society, 50 (1999), 275.  doi: 10.2307/3010691.  Google Scholar

[22]

J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares,, Applied Mathematical Modelling, 31 (2007), 880.  doi: 10.1016/j.apm.2006.02.009.  Google Scholar

[23]

J. Kennedy and R. C. Eberhart, Particle swarm optimization,, in Proceedings of IEEE International Conference on Neural Networks, (1995), 1942.   Google Scholar

[24]

J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence,, Morgan Kaufmann, (2001).   Google Scholar

[25]

B. K. Kumar and S. P. Madheswari, An M/M/2 queueing system with heterogeneous servers and multiple vacations,, Mathematical and Computer Modelling, 41 (2005), 1415.  doi: 10.1016/j.mcm.2005.02.002.  Google Scholar

[26]

Y. Li and J. Xu, A deteriorating system with its repairman having multiple vacations,, Applied Mathematics and Computation, 217 (2011), 4980.  doi: 10.1016/j.amc.2010.11.048.  Google Scholar

[27]

C. J. Lin and C. Y. Lee, Non-linear system control using a recurrent fuzzy neural network based on improved particle swarm optimization,, International Journal of Systems and Science, 41 (2010), 381.   Google Scholar

[28]

C. D. Liou, Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method'',, Journal of Industrial and Management Optimization, 8 (2012), 727.  doi: 10.3934/jimo.2012.8.727.  Google Scholar

[29]

L. D. Servi and S. G. Finn, M/M/1 queue with working vacation (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[30]

Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization,, Lecture Notes in Computer Science, 1447 (1998), 591.  doi: 10.1007/BFb0040810.  Google Scholar

[31]

K. E. Stecke and J. E. Aronson, Review of operator/machine interference models,, International Journal of Production Research, 23 (1985), 129.  doi: 10.1080/00207548508904696.  Google Scholar

[32]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research and Management Science, (2006).   Google Scholar

[33]

K. H. Wang, Profit analysis of the MRP with a single service station subject to breakdowns,, Journal of the Operational Research Society, 41 (1990), 1153.   Google Scholar

[34]

K. H. Wang, W. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method,, Journal of Computational and Applied Mathematics, 233 (2009), 449.  doi: 10.1016/j.cam.2009.07.043.  Google Scholar

[35]

K. H. Wang and M. Y. Kuo, Profit analysis of the M/Ek/1 machine repair problem with a non-reliable service station,, Computers and Industrial Engineering, 32 (1997), 587.  doi: 10.1016/S0360-8352(96)00313-0.  Google Scholar

[36]

K. H. Wang, C. D. Liou and Y. H. Lin, Comparative analysis of the machine repair problem with imperfect coverage and service pressure condition,, Applied Mathematical Modelling, 37 (2013), 2870.  doi: 10.1016/j.apm.2012.06.024.  Google Scholar

[37]

K. H. Wang, C. D. Liou and Y. L. Wang, Profit Optimization of the Multiple-Vacation Machine Repair Problem Using Particle Swarm Optimization,, International Journal of Systems and Science, (2014).   Google Scholar

[38]

L. Yuan, Reliability analysis for a k-out-of-n: G system with redundant dependency and repairmen having multiple vacations,, Applied Mathematics and Computation, 218 (2012), 11959.  doi: 10.1016/j.amc.2012.06.006.  Google Scholar

[39]

D. Yue, J. Yu and W. Yue, A Markovian queue with two heterogeneous servers and multiple vacations,, Journal of Industrial and Management Optimization, 5 (2009), 453.  doi: 10.3934/jimo.2009.5.453.  Google Scholar

[40]

D. Yue, W. Yue, Z. Saffer and X. Chen, Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy,, Journal of Industrial and Management Optimization, 10 (2014), 89.  doi: 10.3934/jimo.2014.10.89.  Google Scholar

show all references

References:
[1]

M. Clerc, Particle Swarm Optimization,, Translated from the 2005 French original, (2005).  doi: 10.1002/9780470612163.  Google Scholar

[2]

B. T. Doshi, Queueing systems with vacations-a Survey,, Queueing Systems, 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[3]

R. C. Eberhart and Y. Shi, Particle swarm optimization: Developments, applications and resources,, in Proceedings of IEEE International Conference on Evolutionary Computation, 1 (2001), 81.  doi: 10.1109/CEC.2001.934374.  Google Scholar

[4]

R. C. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementations,, Morgan Kaufmann, (2007).   Google Scholar

[5]

S. W. Fuhrmann and R. B. Cooper, Stochastic decompositions in the M/G/1 queue with generalize vacations,, Operations Research, 33 (1995), 1117.  doi: 10.1287/opre.33.5.1117.  Google Scholar

[6]

M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization,, John-Wiley & Sons, (2007).  doi: 10.1002/9780470172261.  Google Scholar

[7]

N. Gharbi and M. Ioualalen, Numerical investigation of finite-source multi server systems with different vacation policies,, Journal of Computational and Applied Mathematics, 234 (2010), 625.  doi: 10.1016/j.cam.2009.11.040.  Google Scholar

[8]

W. J. Gray, P. P. Wang and M. Scott, A vacation queueing model with service breakdowns,, Applied Mathematical Modelling, 24 (2000), 391.  doi: 10.1016/S0307-904X(99)00048-7.  Google Scholar

[9]

S. M. Gupta, N-policy queueing system with finite source and warm spares,, Journal of Operational Research Society of India, 36 (1999), 189.   Google Scholar

[10]

S. M. Gupta, Machine interference problem with warm spares, sever vacations and exhaustive service,, Performance Evaluation, 29 (1997), 195.   Google Scholar

[11]

L. Haque and M. J. Armstrong, A survey of the machine interference problem,, European Journal of Operational Research, 179 (2007), 469.  doi: 10.1016/j.ejor.2006.02.036.  Google Scholar

[12]

J. H. Holland, Adaptation in Natural and Artificial Systems,, An introductory analysis with applications to biology, (1975).   Google Scholar

[13]

M. Jain and R. S. Maheshwari, N-policy for a machine repair system with spares and reneging,, Applied Mathematical Modelling, 28 (2004), 513.  doi: 10.1016/j.apm.2003.10.013.  Google Scholar

[14]

J. Jia and S. Wu, A replacement policy for a repairable system with its repairman having multiple vacations,, Computers and Industrial Engineering, 57 (2009), 156.  doi: 10.1016/j.cie.2008.11.003.  Google Scholar

[15]

F. Karaesmen and S. M. Gupta, The finite GI/M/1 queue with server vacations,, Journal of the Operational Research Society, 47 (1996), 817.  doi: 10.2307/3010289.  Google Scholar

[16]

J. C. Ke, The optimal control of an M/G/1 queueing system with server vacations, startup and breakdowns,, Computers and Industrial Engineering, 44 (2003), 567.  doi: 10.1016/S0360-8352(02)00235-8.  Google Scholar

[17]

J. C. Ke, Vacation policies for machine interference problem with an unreliable server and state-dependent service rate,, Journal of the Chinese Institute of Engineers, 23 (2006), 100.   Google Scholar

[18]

J. C. Ke and C. H. Lin, Sensitivity analysis of machine repair problems in manufacturing systems with service interruptions,, Applied Mathematical Modelling, 32 (2008), 2087.  doi: 10.1016/j.apm.2007.07.004.  Google Scholar

[19]

J. C. Ke and C. H. Lin, A markov repairable system involving an imperfect service station with multiple vacations,, Asia Pacific Journal of Operational Research, 22 (2005), 555.  doi: 10.1142/S021759590500073X.  Google Scholar

[20]

J. C. Ke, C. H. Lin, H. I. Huang and Z. G. Zhang, An algorithm analysis of multi-server vacation model with service interruptions,, Computers and Industrial Engineering, 61 (2011), 1302.  doi: 10.1016/j.cie.2011.08.003.  Google Scholar

[21]

J. C. Ke and K. H. Wang, Cost analysis of the M/M/R machine repair problem with balking, reneging, and server breakdowns,, Journal of the Operational Research Society, 50 (1999), 275.  doi: 10.2307/3010691.  Google Scholar

[22]

J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares,, Applied Mathematical Modelling, 31 (2007), 880.  doi: 10.1016/j.apm.2006.02.009.  Google Scholar

[23]

J. Kennedy and R. C. Eberhart, Particle swarm optimization,, in Proceedings of IEEE International Conference on Neural Networks, (1995), 1942.   Google Scholar

[24]

J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence,, Morgan Kaufmann, (2001).   Google Scholar

[25]

B. K. Kumar and S. P. Madheswari, An M/M/2 queueing system with heterogeneous servers and multiple vacations,, Mathematical and Computer Modelling, 41 (2005), 1415.  doi: 10.1016/j.mcm.2005.02.002.  Google Scholar

[26]

Y. Li and J. Xu, A deteriorating system with its repairman having multiple vacations,, Applied Mathematics and Computation, 217 (2011), 4980.  doi: 10.1016/j.amc.2010.11.048.  Google Scholar

[27]

C. J. Lin and C. Y. Lee, Non-linear system control using a recurrent fuzzy neural network based on improved particle swarm optimization,, International Journal of Systems and Science, 41 (2010), 381.   Google Scholar

[28]

C. D. Liou, Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method'',, Journal of Industrial and Management Optimization, 8 (2012), 727.  doi: 10.3934/jimo.2012.8.727.  Google Scholar

[29]

L. D. Servi and S. G. Finn, M/M/1 queue with working vacation (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[30]

Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization,, Lecture Notes in Computer Science, 1447 (1998), 591.  doi: 10.1007/BFb0040810.  Google Scholar

[31]

K. E. Stecke and J. E. Aronson, Review of operator/machine interference models,, International Journal of Production Research, 23 (1985), 129.  doi: 10.1080/00207548508904696.  Google Scholar

[32]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research and Management Science, (2006).   Google Scholar

[33]

K. H. Wang, Profit analysis of the MRP with a single service station subject to breakdowns,, Journal of the Operational Research Society, 41 (1990), 1153.   Google Scholar

[34]

K. H. Wang, W. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method,, Journal of Computational and Applied Mathematics, 233 (2009), 449.  doi: 10.1016/j.cam.2009.07.043.  Google Scholar

[35]

K. H. Wang and M. Y. Kuo, Profit analysis of the M/Ek/1 machine repair problem with a non-reliable service station,, Computers and Industrial Engineering, 32 (1997), 587.  doi: 10.1016/S0360-8352(96)00313-0.  Google Scholar

[36]

K. H. Wang, C. D. Liou and Y. H. Lin, Comparative analysis of the machine repair problem with imperfect coverage and service pressure condition,, Applied Mathematical Modelling, 37 (2013), 2870.  doi: 10.1016/j.apm.2012.06.024.  Google Scholar

[37]

K. H. Wang, C. D. Liou and Y. L. Wang, Profit Optimization of the Multiple-Vacation Machine Repair Problem Using Particle Swarm Optimization,, International Journal of Systems and Science, (2014).   Google Scholar

[38]

L. Yuan, Reliability analysis for a k-out-of-n: G system with redundant dependency and repairmen having multiple vacations,, Applied Mathematics and Computation, 218 (2012), 11959.  doi: 10.1016/j.amc.2012.06.006.  Google Scholar

[39]

D. Yue, J. Yu and W. Yue, A Markovian queue with two heterogeneous servers and multiple vacations,, Journal of Industrial and Management Optimization, 5 (2009), 453.  doi: 10.3934/jimo.2009.5.453.  Google Scholar

[40]

D. Yue, W. Yue, Z. Saffer and X. Chen, Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy,, Journal of Industrial and Management Optimization, 10 (2014), 89.  doi: 10.3934/jimo.2014.10.89.  Google Scholar

[1]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[2]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[3]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[4]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[5]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[6]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[7]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[8]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[9]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[10]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[11]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[12]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[13]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[14]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[15]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[16]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[18]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[19]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[20]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]