July  2015, 11(3): 887-920. doi: 10.3934/jimo.2015.11.887

Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures

1. 

Mobile Innovation Centre, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

2. 

MTA-BME Information systems research group and Department of Networked Systems and Services, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary

Received  November 2013 Revised  August 2014 Published  October 2014

One of the key issues in recent mobile telecommunication is to increase the scalability of current packet data networks. This comes along with the requirement of reducing the load of signaling related to establishment and handover procedures. This paper establishes an analytical model to analyze the signaling overhead of two different secure mobile architectures. Both are based on the Host Identity Protocol for secure signaling and use IPsec for secure data transport. The paper presents the cumulative distribution function and moments of security association periods and calculates the rate of different signaling procedures in a synthetic network model assuming M/G/$\infty$ process for session establishments between end-nodes. Using the model, it is shown that the Ultra Flat Architecture has significant performance gains over the traditional End-to-End HIP protocol in large-scale mobile environment in the access networks and toward the rendezvous service, but performs worse in the core transport network between the GWs.
Citation: Zoltán Faigl, Miklós Telek. Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures. Journal of Industrial & Management Optimization, 2015, 11 (3) : 887-920. doi: 10.3934/jimo.2015.11.887
References:
[1]

, Cisco visual networking index: Global mobile data traffic forecast update, 2013-2018,, White Paper, (2014), 11.   Google Scholar

[2]

L. Bokor, Z. Faigl and S. Imre, Survey and evaluation of advanced mobility management schemes in the host identity layer,, International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34.  doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

L. Bokor, Z. Faigl and S. Imre, A Delegation-based HIP Signaling Scheme for the Ultra Flat Architecture,, Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), (2010), 1.  doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

D. J. Daley, The Busy Period of the M/GI/$\infty$ Queue,, Queueing Syst. Theory Appl., 38 (2001), 195.  doi: 10.1023/A:1010958415137.  Google Scholar

[5]

K. Daoud, P. Herbelin and N. Crespi, UFA: Ultra Flat Architecture for high bitrate services in mobile networks,, Proceedings of the IEEE 19th International Symposium on Personal, (2008), 1.  doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Z. Faigl, Performance Analysis of Signalling Overhead in Host Identity Protocol-based Secure Mobile Networks: Ultra Flat Architecture or End-to-End Signalling?,, Wireless Networks, (2014), 11276.  doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Z. Faigl, L. Bokor, P. Neves, K. Daoud and P. Herbelin, Evaluation of Two Integrated Signalling Schemes for the Ultra Flat Architecture using SIP, IEEE 802.21, and HIP/PMIP Protocols,, Computer Networks, 55 (2011), 1560.  doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

A. Gurtov, M. Komu and R. Moskowitz., Host Identity Protocol (HIP): Identifier/Locator Split for Host Mobility and Multihoming,, Internet Protocol Journal, 12 (2009), 27.   Google Scholar

[9]

T. Heer and S. Varjonen, Host Identity Protocol Certificates,, RFC 6253, (6253).   Google Scholar

[10]

P. Jokela, R. Moskowitz and P. Nikander, Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP),, RFC 5202, (5202).   Google Scholar

[11]

T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE),, RFC 3526, (3526).   Google Scholar

[12]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems,, 2nd edition, (2009).   Google Scholar

[13]

J. Laganier, T. Koponen and L. Eggert, Host Identity Protocol (HIP) Registration Extension,, RFC 5203, (5203).   Google Scholar

[14]

R. Moskowitz et al, Host Identity Protocol,, RFC 5201, (5201).   Google Scholar

[15]

P. Nikander and J. Arkko, Delegation of Signalling Rights,, in Security Protocols, 2845 (2004), 203.  doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

P. Nikander, T. Henderson, C. Vogt and J. Arkko, End-Host Mobility and Multihoming with the Host Identity Protocol,, RFC 5206, (5206).   Google Scholar

[17]

E. Rescorla, Diffie-Hellman Key Agreement Method,, RFC 2631, (2631).   Google Scholar

show all references

References:
[1]

, Cisco visual networking index: Global mobile data traffic forecast update, 2013-2018,, White Paper, (2014), 11.   Google Scholar

[2]

L. Bokor, Z. Faigl and S. Imre, Survey and evaluation of advanced mobility management schemes in the host identity layer,, International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 3 (2014), 34.  doi: 10.4018/ijwnbt.2014010103.  Google Scholar

[3]

L. Bokor, Z. Faigl and S. Imre, A Delegation-based HIP Signaling Scheme for the Ultra Flat Architecture,, Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN'10), (2010), 1.  doi: 10.1109/IWSCN.2010.5498001.  Google Scholar

[4]

D. J. Daley, The Busy Period of the M/GI/$\infty$ Queue,, Queueing Syst. Theory Appl., 38 (2001), 195.  doi: 10.1023/A:1010958415137.  Google Scholar

[5]

K. Daoud, P. Herbelin and N. Crespi, UFA: Ultra Flat Architecture for high bitrate services in mobile networks,, Proceedings of the IEEE 19th International Symposium on Personal, (2008), 1.  doi: 10.1109/PIMRC.2008.4699577.  Google Scholar

[6]

Z. Faigl, Performance Analysis of Signalling Overhead in Host Identity Protocol-based Secure Mobile Networks: Ultra Flat Architecture or End-to-End Signalling?,, Wireless Networks, (2014), 11276.  doi: 10.1007/s11276-014-0797-8.  Google Scholar

[7]

Z. Faigl, L. Bokor, P. Neves, K. Daoud and P. Herbelin, Evaluation of Two Integrated Signalling Schemes for the Ultra Flat Architecture using SIP, IEEE 802.21, and HIP/PMIP Protocols,, Computer Networks, 55 (2011), 1560.  doi: 10.1016/j.comnet.2011.02.005.  Google Scholar

[8]

A. Gurtov, M. Komu and R. Moskowitz., Host Identity Protocol (HIP): Identifier/Locator Split for Host Mobility and Multihoming,, Internet Protocol Journal, 12 (2009), 27.   Google Scholar

[9]

T. Heer and S. Varjonen, Host Identity Protocol Certificates,, RFC 6253, (6253).   Google Scholar

[10]

P. Jokela, R. Moskowitz and P. Nikander, Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP),, RFC 5202, (5202).   Google Scholar

[11]

T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE),, RFC 3526, (3526).   Google Scholar

[12]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems,, 2nd edition, (2009).   Google Scholar

[13]

J. Laganier, T. Koponen and L. Eggert, Host Identity Protocol (HIP) Registration Extension,, RFC 5203, (5203).   Google Scholar

[14]

R. Moskowitz et al, Host Identity Protocol,, RFC 5201, (5201).   Google Scholar

[15]

P. Nikander and J. Arkko, Delegation of Signalling Rights,, in Security Protocols, 2845 (2004), 203.  doi: 10.1007/978-3-540-39871-4_17.  Google Scholar

[16]

P. Nikander, T. Henderson, C. Vogt and J. Arkko, End-Host Mobility and Multihoming with the Host Identity Protocol,, RFC 5206, (5206).   Google Scholar

[17]

E. Rescorla, Diffie-Hellman Key Agreement Method,, RFC 2631, (2631).   Google Scholar

[1]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[2]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[3]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[4]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]