-
Previous Article
Two approaches for solving mathematical programs with second-order cone complementarity constraints
- JIMO Home
- This Issue
-
Next Article
Clustering based polyhedral conic functions algorithm in classification
Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns
1. | Department of Industrial Engineering, Karazmi University, Mofatteh Avenue, Tehran, Iran, Iran |
2. | Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey |
3. | Department of Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran |
References:
[1] |
P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering, Managem. Sci., 42 (1996), 1093-1104.
doi: 10.1287/mnsc.42.8.1093. |
[2] |
P. L. Abad, Optimal price and order size for a reseller under partial backordering, Comp. and Oper. Res., 28 (2001), 53-65.
doi: 10.1016/S0305-0548(99)00086-6. |
[3] |
E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence, Working paper, Kellogg School of Management, Northwestern University, February 2006. |
[4] |
A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging, Applied Mathematics and Computation, 232 (2014), 1125-1137.
doi: 10.1016/j.amc.2014.01.115. |
[5] |
J. A. Buzacott, Economic order quantity with inflation, Operational Quarterly, 26 (1975), 553-558.
doi: 10.2307/3008214. |
[6] |
C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat, J. of Prod. Econ, 123 (2010), 62-68. |
[7] |
H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging, Eur. J. Oper. Res., 168 (2005), 51-64.
doi: 10.1016/j.ejor.2004.05.003. |
[8] |
J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions, Eur. J. Oper. Res., 195 (2009), 280-295.
doi: 10.1016/j.ejor.2008.01.030. |
[9] |
R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Trans., 5 (1973), 323-326.
doi: 10.1080/05695557308974918. |
[10] |
T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages, Eur. J. Oper. Res., 52 (1991), 326-333.
doi: 10.1016/0377-2217(91)90167-T. |
[11] |
C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega, 35 (2007), 184-189.
doi: 10.1016/j.omega.2005.05.002. |
[12] |
C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach, Comput. and Industrial Engineering, 52 (2007), 29-40.
doi: 10.1016/j.cie.2006.10.009. |
[13] |
K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments, J. of Comp. and Appl. Math., 223 (2010), 2492-2505.
doi: 10.1016/j.cam.2009.10.031. |
[14] |
P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system, Internat. J. of Prod. Res., 21 (1963), 449-460. |
[15] |
A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227 (2013), 1057-1074.
doi: 10.1177/0954405413481452. |
[16] |
M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns, Journal of Industrial Engineering, 2013 (2013), Article ID 709083, 7 pages.
doi: 10.1155/2013/709083. |
[17] |
M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns, Optimization, 63 (2014), 1785-1804.
doi: 10.1080/02331934.2013.853059. |
[18] |
M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation, to appear in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, (2014), doi: 10.1177/0954405414522215.
doi: 10.1177/0954405414522215. |
[19] |
B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon, European Journal of Operational Research, 234 (2014), 683-693.
doi: 10.1016/j.ejor.2013.11.001. |
[20] |
S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits, Internat. J. of Systems Sci., 22 (1991), 197-207.
doi: 10.1080/00207729108910600. |
[21] |
S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, Eur. J. Oper. Res., 134 (2001), 1-16.
doi: 10.1016/S0377-2217(00)00248-4. |
[22] |
A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment, Applied Mathematical Modeling, 37 (2013), 240-257.
doi: 10.1016/j.apm.2012.02.010. |
[23] |
R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs, IIE Trans., 24 (1992), 104-110.
doi: 10.1080/07408179208964207. |
[24] |
M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand, J. Oper. Res. Soc., 47 (1996), 1228-1246.
doi: 10.2307/3010036. |
[25] |
M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions, Eur. J. Oper. Res., 89 (1996), 313-325.
doi: 10.1016/0377-2217(94)00256-8. |
[26] |
K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate, Comp. Ind. Eng., 20 (1991), 187-197. |
[27] |
J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing, J. of Direct Marketing, 11 (1997), 20-35.
doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0. |
[28] |
I. Horowitz, EOQ and inflation uncertainty, International Journal of Prod. Econ., 65 (2000), 217-224.
doi: 10.1016/S0925-5273(99)00034-1. |
[29] |
K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation, OPSEARCH, 50 (2013), 404-417.
doi: 10.1007/s12597-012-0115-0. |
[30] |
T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation, Expert Syst. with Appl., 37 (2010), 7234-7242.
doi: 10.1016/j.eswa.2010.04.004. |
[31] |
C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand, Int. J. Prod. Econ., 103 (2006), 707-714.
doi: 10.1016/j.ijpe.2006.01.004. |
[32] |
R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand, Int. J. Prod. Econ., 136 (2012), 116-122.
doi: 10.1016/j.ijpe.2011.09.020. |
[33] |
R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging, Math. and Comp. Modelling, 55 (2012), 1722-1733.
doi: 10.1016/j.mcm.2011.11.017. |
[34] |
A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages, Internat. J. of Systems Sci., 40 (2009), 21-31.
doi: 10.1080/00207720802088264. |
[35] |
R. B. Misra, A note on optimal inventory management under inflation, Naval Res. Logist. Quart., 26 (1979), 161-165.
doi: 10.1002/nav.3800260116. |
[36] |
I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle, Eur. J. Oper. Res., 125 (2000), 588-601.
doi: 10.1016/S0377-2217(99)00270-2. |
[37] |
I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting, Eur. J. Oper. Res., 162 (2005), 773-785.
doi: 10.1016/j.ejor.2003.09.025. |
[38] |
A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments, Internat. J. of Prod. Econ., 136 (2012), 75-83.
doi: 10.1016/j.ijpe.2011.09.013. |
[39] |
L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments, Comp. and Indust. Eng., 51 (2006), 637-651.
doi: 10.1016/j.cie.2006.07.012. |
[40] |
L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase, Journal of Industrial and Management Optimization, 9 (2013), 437-454.
doi: 10.3934/jimo.2013.9.437. |
[41] |
K. S. Park, Inflationary effect on EOQ under trade-credit financing, International Journal on Policy and Information, 10 (1986), 65-69. |
[42] |
F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach, Applied Mathematical Modelling, 37 (2013), 6683-6694.
doi: 10.1016/j.apm.2012.12.020. |
[43] |
B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system, Applied Mathematics and Computation, 217 (2011), 6159-6167.
doi: 10.1016/j.amc.2010.12.098. |
[44] |
B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model, Expert Systems with Applications, 38 (2011), 13543-13548.
doi: 10.1016/j.eswa.2011.04.044. |
[45] |
B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration, Int. J. Prod. Eco., 48 (1997), 227-236.
doi: 10.1016/S0925-5273(96)00107-7. |
[46] |
B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage, Internat. J. of Prod. Managem., 34 (1994), 65-72.
doi: 10.1016/0925-5273(94)90047-7. |
[47] |
J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151-162.
doi: 10.1080/02331934.2011.590485. |
[48] |
J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors, Computers and Mathematics with Applications, 63 (2012), 1007-1019.
doi: 10.1016/j.camwa.2011.09.050. |
[49] |
Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments, Comput. and Oper. Res., 35 (2008), 3562-3580.
doi: 10.1016/j.cor.2007.01.024. |
[50] |
H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market, Comp. Oper. Res., 22 (1995), 345-356. |
[51] |
H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money, Internat. J. Prod. Econ., 71 (2001), 213-220.
doi: 10.1016/S0925-5273(00)00121-3. |
[52] |
K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging, Internat. J. of Prod. Econ., 101 (2006), 369-384.
doi: 10.1016/j.ijpe.2005.01.010. |
[53] |
C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging, Math. Problems in Eng., 2009 (2009), Article ID 198305, 18 pages.
doi: 10.1155/2009/198305. |
[54] |
J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment, Journal of Industrial and Management Optimization, 10 (2014), 1261-1277.
doi: 10.3934/jimo.2014.10.1261. |
[55] |
S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting, Eur. J. Oper. Res., 216 (2012), 105-112.
doi: 10.1016/j.ejor.2011.07.024. |
show all references
References:
[1] |
P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering, Managem. Sci., 42 (1996), 1093-1104.
doi: 10.1287/mnsc.42.8.1093. |
[2] |
P. L. Abad, Optimal price and order size for a reseller under partial backordering, Comp. and Oper. Res., 28 (2001), 53-65.
doi: 10.1016/S0305-0548(99)00086-6. |
[3] |
E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence, Working paper, Kellogg School of Management, Northwestern University, February 2006. |
[4] |
A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging, Applied Mathematics and Computation, 232 (2014), 1125-1137.
doi: 10.1016/j.amc.2014.01.115. |
[5] |
J. A. Buzacott, Economic order quantity with inflation, Operational Quarterly, 26 (1975), 553-558.
doi: 10.2307/3008214. |
[6] |
C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat, J. of Prod. Econ, 123 (2010), 62-68. |
[7] |
H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging, Eur. J. Oper. Res., 168 (2005), 51-64.
doi: 10.1016/j.ejor.2004.05.003. |
[8] |
J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions, Eur. J. Oper. Res., 195 (2009), 280-295.
doi: 10.1016/j.ejor.2008.01.030. |
[9] |
R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Trans., 5 (1973), 323-326.
doi: 10.1080/05695557308974918. |
[10] |
T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages, Eur. J. Oper. Res., 52 (1991), 326-333.
doi: 10.1016/0377-2217(91)90167-T. |
[11] |
C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega, 35 (2007), 184-189.
doi: 10.1016/j.omega.2005.05.002. |
[12] |
C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach, Comput. and Industrial Engineering, 52 (2007), 29-40.
doi: 10.1016/j.cie.2006.10.009. |
[13] |
K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments, J. of Comp. and Appl. Math., 223 (2010), 2492-2505.
doi: 10.1016/j.cam.2009.10.031. |
[14] |
P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system, Internat. J. of Prod. Res., 21 (1963), 449-460. |
[15] |
A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227 (2013), 1057-1074.
doi: 10.1177/0954405413481452. |
[16] |
M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns, Journal of Industrial Engineering, 2013 (2013), Article ID 709083, 7 pages.
doi: 10.1155/2013/709083. |
[17] |
M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns, Optimization, 63 (2014), 1785-1804.
doi: 10.1080/02331934.2013.853059. |
[18] |
M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation, to appear in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, (2014), doi: 10.1177/0954405414522215.
doi: 10.1177/0954405414522215. |
[19] |
B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon, European Journal of Operational Research, 234 (2014), 683-693.
doi: 10.1016/j.ejor.2013.11.001. |
[20] |
S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits, Internat. J. of Systems Sci., 22 (1991), 197-207.
doi: 10.1080/00207729108910600. |
[21] |
S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, Eur. J. Oper. Res., 134 (2001), 1-16.
doi: 10.1016/S0377-2217(00)00248-4. |
[22] |
A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment, Applied Mathematical Modeling, 37 (2013), 240-257.
doi: 10.1016/j.apm.2012.02.010. |
[23] |
R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs, IIE Trans., 24 (1992), 104-110.
doi: 10.1080/07408179208964207. |
[24] |
M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand, J. Oper. Res. Soc., 47 (1996), 1228-1246.
doi: 10.2307/3010036. |
[25] |
M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions, Eur. J. Oper. Res., 89 (1996), 313-325.
doi: 10.1016/0377-2217(94)00256-8. |
[26] |
K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate, Comp. Ind. Eng., 20 (1991), 187-197. |
[27] |
J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing, J. of Direct Marketing, 11 (1997), 20-35.
doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0. |
[28] |
I. Horowitz, EOQ and inflation uncertainty, International Journal of Prod. Econ., 65 (2000), 217-224.
doi: 10.1016/S0925-5273(99)00034-1. |
[29] |
K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation, OPSEARCH, 50 (2013), 404-417.
doi: 10.1007/s12597-012-0115-0. |
[30] |
T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation, Expert Syst. with Appl., 37 (2010), 7234-7242.
doi: 10.1016/j.eswa.2010.04.004. |
[31] |
C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand, Int. J. Prod. Econ., 103 (2006), 707-714.
doi: 10.1016/j.ijpe.2006.01.004. |
[32] |
R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand, Int. J. Prod. Econ., 136 (2012), 116-122.
doi: 10.1016/j.ijpe.2011.09.020. |
[33] |
R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging, Math. and Comp. Modelling, 55 (2012), 1722-1733.
doi: 10.1016/j.mcm.2011.11.017. |
[34] |
A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages, Internat. J. of Systems Sci., 40 (2009), 21-31.
doi: 10.1080/00207720802088264. |
[35] |
R. B. Misra, A note on optimal inventory management under inflation, Naval Res. Logist. Quart., 26 (1979), 161-165.
doi: 10.1002/nav.3800260116. |
[36] |
I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle, Eur. J. Oper. Res., 125 (2000), 588-601.
doi: 10.1016/S0377-2217(99)00270-2. |
[37] |
I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting, Eur. J. Oper. Res., 162 (2005), 773-785.
doi: 10.1016/j.ejor.2003.09.025. |
[38] |
A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments, Internat. J. of Prod. Econ., 136 (2012), 75-83.
doi: 10.1016/j.ijpe.2011.09.013. |
[39] |
L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments, Comp. and Indust. Eng., 51 (2006), 637-651.
doi: 10.1016/j.cie.2006.07.012. |
[40] |
L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase, Journal of Industrial and Management Optimization, 9 (2013), 437-454.
doi: 10.3934/jimo.2013.9.437. |
[41] |
K. S. Park, Inflationary effect on EOQ under trade-credit financing, International Journal on Policy and Information, 10 (1986), 65-69. |
[42] |
F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach, Applied Mathematical Modelling, 37 (2013), 6683-6694.
doi: 10.1016/j.apm.2012.12.020. |
[43] |
B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system, Applied Mathematics and Computation, 217 (2011), 6159-6167.
doi: 10.1016/j.amc.2010.12.098. |
[44] |
B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model, Expert Systems with Applications, 38 (2011), 13543-13548.
doi: 10.1016/j.eswa.2011.04.044. |
[45] |
B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration, Int. J. Prod. Eco., 48 (1997), 227-236.
doi: 10.1016/S0925-5273(96)00107-7. |
[46] |
B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage, Internat. J. of Prod. Managem., 34 (1994), 65-72.
doi: 10.1016/0925-5273(94)90047-7. |
[47] |
J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151-162.
doi: 10.1080/02331934.2011.590485. |
[48] |
J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors, Computers and Mathematics with Applications, 63 (2012), 1007-1019.
doi: 10.1016/j.camwa.2011.09.050. |
[49] |
Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments, Comput. and Oper. Res., 35 (2008), 3562-3580.
doi: 10.1016/j.cor.2007.01.024. |
[50] |
H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market, Comp. Oper. Res., 22 (1995), 345-356. |
[51] |
H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money, Internat. J. Prod. Econ., 71 (2001), 213-220.
doi: 10.1016/S0925-5273(00)00121-3. |
[52] |
K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging, Internat. J. of Prod. Econ., 101 (2006), 369-384.
doi: 10.1016/j.ijpe.2005.01.010. |
[53] |
C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging, Math. Problems in Eng., 2009 (2009), Article ID 198305, 18 pages.
doi: 10.1155/2009/198305. |
[54] |
J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment, Journal of Industrial and Management Optimization, 10 (2014), 1261-1277.
doi: 10.3934/jimo.2014.10.1261. |
[55] |
S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting, Eur. J. Oper. Res., 216 (2012), 105-112.
doi: 10.1016/j.ejor.2011.07.024. |
[1] |
Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial and Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437 |
[2] |
Chandan Mahato, Gour Chandra Mahata. Optimal replenishment, pricing and preservation technology investment policies for non-instantaneous deteriorating items under two-level trade credit policy. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021123 |
[3] |
Umakanta Mishra, Abu Hashan Md Mashud, Sankar Kumar Roy, Md Sharif Uddin. The effect of rebate value and selling price-dependent demand for a four-level production manufacturing system. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021233 |
[4] |
Shuhua Zhang, Longzhou Cao, Zuliang Lu. An EOQ inventory model for deteriorating items with controllable deterioration rate under stock-dependent demand rate and non-linear holding cost. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021156 |
[5] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002 |
[6] |
Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3083-3103. doi: 10.3934/jimo.2019095 |
[7] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1345-1373. doi: 10.3934/jimo.2018098 |
[8] |
Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2129-2161. doi: 10.3934/jimo.2021060 |
[9] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Deteriorating inventory with preservation technology under price- and stock-sensitive demand. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1585-1612. doi: 10.3934/jimo.2019019 |
[10] |
Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096 |
[11] |
Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial and Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769 |
[12] |
Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084 |
[13] |
Deepak Kumar Nayak, Sudhansu Sekhar Routray, Susanta Kumar Paikray, Hemen Dutta. A fuzzy inventory model for Weibull deteriorating items under completely backlogged shortages. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2435-2453. doi: 10.3934/dcdss.2020401 |
[14] |
Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261 |
[15] |
Yinuo Wang, Chuandong Li, Hongjuan Wu, Hao Deng. Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1767-1776. doi: 10.3934/dcdss.2022005 |
[16] |
Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1317-1344. doi: 10.3934/jimo.2018097 |
[17] |
Puspita Mahata, Gour Chandra Mahata. Two-echelon trade credit with default risk in an EOQ model for deteriorating items under dynamic demand. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3659-3684. doi: 10.3934/jimo.2020138 |
[18] |
Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138 |
[19] |
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 |
[20] |
Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]