• Previous Article
    Optimization of capital structure in real estate enterprises
  • JIMO Home
  • This Issue
  • Next Article
    Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns
July  2015, 11(3): 951-968. doi: 10.3934/jimo.2015.11.951

Two approaches for solving mathematical programs with second-order cone complementarity constraints

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning

3. 

School of Management, Shanghai University, Shanghai 200444, China

Received  August 2013 Revised  June 2014 Published  October 2014

This paper considers a mathematical program with second-order cone complementarity constrains (MPSOCC). We present two approximation methods for solving the MPSOCC. One employs some smoothing functions to approximate the MPSOCC and the other makes use of some techniques to relax the complementarity constrains in the MPSOCC. We investigate the limiting behavior of both methods. In particular, we show that, under mild conditions, any accumulation point of stationary points of the approximation problems must be a Clarke-type stationary point of the MPSOCC.
Citation: Xi-De Zhu, Li-Ping Pang, Gui-Hua Lin. Two approaches for solving mathematical programs with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 951-968. doi: 10.3934/jimo.2015.11.951
References:
[1]

F. Alizadeh and D. Goldfarb, Second-order cone programming,, Mathematical Programming, 95 (2003), 3.  doi: 10.1007/s10107-002-0339-5.  Google Scholar

[2]

J. S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones,, Mathematical Programming, 101 (2004), 95.  doi: 10.1007/s10107-004-0538-3.  Google Scholar

[3]

J. S. Chen and S. Pan, A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs,, Pacific Journal of Optimization, 8 (2012), 33.   Google Scholar

[4]

X. D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems,, Computational Optimization and Applications, 25 (2003), 39.  doi: 10.1023/A:1022996819381.  Google Scholar

[5]

Y. Chen and M. Florian, The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions,, Optimization, 32 (1995), 193.  doi: 10.1080/02331939508844048.  Google Scholar

[6]

U. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford Mathematical Monographs, (1994).   Google Scholar

[7]

M. Fukushima and G. H. Lin, Smoothing methods for mathematical programs with equilibrium constraints,, Proceedings of the ICKS'04, 2004 (2004), 206.  doi: 10.1109/ICKS.2004.1313426.  Google Scholar

[8]

M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems,, SIAM Journal on Optimization, 12 (2001), 436.  doi: 10.1137/S1052623400380365.  Google Scholar

[9]

S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems,, SIAM Journal on Optimization, 15 (2005), 593.  doi: 10.1137/S1052623403421516.  Google Scholar

[10]

Y. C. Liang, X. D. Zhu and G. H. Lin, Necessary optimality conditions for mathematical programs with second-order cone complementarity constraints,, Set-Valued and Variational Analysis, 22 (2014), 59.  doi: 10.1007/s11228-013-0250-7.  Google Scholar

[11]

Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[12]

J. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equlilibrium Constraints: Theory, Applications, and Numerical Results,, Kluwer Academic Publisher, (1998).  doi: 10.1007/978-1-4757-2825-5.  Google Scholar

[13]

J. V. Outrata and D. F. Sun, On the coderivative of the projection operator onto the second order cone,, Set-Valued Analysis, 16 (2008), 999.  doi: 10.1007/s11228-008-0092-x.  Google Scholar

[14]

T. Yan and M. Fukushima, Smoothing method for mathematical programs with symmetric cone complementarity,, Optimization, 60 (2011), 113.  doi: 10.1080/02331934.2010.541458.  Google Scholar

[15]

H. Yamamura, T. Okuno, S. Hayashi and M. Fukushima, A smoothing SQP method for mathematical programs with linear second-order cone complementarity constraints,, Pacific Journal of Optimization, 9 (2013), 345.   Google Scholar

[16]

J. J. Ye, D. L. Zhu and Q. J. Zhu, Exact penalization and neccessary conditions for generalized bilevel programming problems,, SIAM Journal on Optimizaion, 7 (1997), 481.  doi: 10.1137/S1052623493257344.  Google Scholar

[17]

Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued Analysis, 19 (2011), 609.  doi: 10.1007/s11228-011-0190-z.  Google Scholar

show all references

References:
[1]

F. Alizadeh and D. Goldfarb, Second-order cone programming,, Mathematical Programming, 95 (2003), 3.  doi: 10.1007/s10107-002-0339-5.  Google Scholar

[2]

J. S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones,, Mathematical Programming, 101 (2004), 95.  doi: 10.1007/s10107-004-0538-3.  Google Scholar

[3]

J. S. Chen and S. Pan, A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs,, Pacific Journal of Optimization, 8 (2012), 33.   Google Scholar

[4]

X. D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems,, Computational Optimization and Applications, 25 (2003), 39.  doi: 10.1023/A:1022996819381.  Google Scholar

[5]

Y. Chen and M. Florian, The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions,, Optimization, 32 (1995), 193.  doi: 10.1080/02331939508844048.  Google Scholar

[6]

U. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford Mathematical Monographs, (1994).   Google Scholar

[7]

M. Fukushima and G. H. Lin, Smoothing methods for mathematical programs with equilibrium constraints,, Proceedings of the ICKS'04, 2004 (2004), 206.  doi: 10.1109/ICKS.2004.1313426.  Google Scholar

[8]

M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems,, SIAM Journal on Optimization, 12 (2001), 436.  doi: 10.1137/S1052623400380365.  Google Scholar

[9]

S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems,, SIAM Journal on Optimization, 15 (2005), 593.  doi: 10.1137/S1052623403421516.  Google Scholar

[10]

Y. C. Liang, X. D. Zhu and G. H. Lin, Necessary optimality conditions for mathematical programs with second-order cone complementarity constraints,, Set-Valued and Variational Analysis, 22 (2014), 59.  doi: 10.1007/s11228-013-0250-7.  Google Scholar

[11]

Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[12]

J. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equlilibrium Constraints: Theory, Applications, and Numerical Results,, Kluwer Academic Publisher, (1998).  doi: 10.1007/978-1-4757-2825-5.  Google Scholar

[13]

J. V. Outrata and D. F. Sun, On the coderivative of the projection operator onto the second order cone,, Set-Valued Analysis, 16 (2008), 999.  doi: 10.1007/s11228-008-0092-x.  Google Scholar

[14]

T. Yan and M. Fukushima, Smoothing method for mathematical programs with symmetric cone complementarity,, Optimization, 60 (2011), 113.  doi: 10.1080/02331934.2010.541458.  Google Scholar

[15]

H. Yamamura, T. Okuno, S. Hayashi and M. Fukushima, A smoothing SQP method for mathematical programs with linear second-order cone complementarity constraints,, Pacific Journal of Optimization, 9 (2013), 345.   Google Scholar

[16]

J. J. Ye, D. L. Zhu and Q. J. Zhu, Exact penalization and neccessary conditions for generalized bilevel programming problems,, SIAM Journal on Optimizaion, 7 (1997), 481.  doi: 10.1137/S1052623493257344.  Google Scholar

[17]

Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued Analysis, 19 (2011), 609.  doi: 10.1007/s11228-011-0190-z.  Google Scholar

[1]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[2]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[3]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[6]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[7]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[8]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[9]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[10]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[11]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[12]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[13]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[14]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[15]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[16]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[17]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]