-
Previous Article
Optimization of capital structure in real estate enterprises
- JIMO Home
- This Issue
-
Next Article
Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns
Two approaches for solving mathematical programs with second-order cone complementarity constraints
1. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China |
2. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning |
3. | School of Management, Shanghai University, Shanghai 200444, China |
References:
[1] |
F. Alizadeh and D. Goldfarb, Second-order cone programming,, Mathematical Programming, 95 (2003), 3.
doi: 10.1007/s10107-002-0339-5. |
[2] |
J. S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones,, Mathematical Programming, 101 (2004), 95.
doi: 10.1007/s10107-004-0538-3. |
[3] |
J. S. Chen and S. Pan, A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs,, Pacific Journal of Optimization, 8 (2012), 33.
|
[4] |
X. D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems,, Computational Optimization and Applications, 25 (2003), 39.
doi: 10.1023/A:1022996819381. |
[5] |
Y. Chen and M. Florian, The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions,, Optimization, 32 (1995), 193.
doi: 10.1080/02331939508844048. |
[6] |
U. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford Mathematical Monographs, (1994).
|
[7] |
M. Fukushima and G. H. Lin, Smoothing methods for mathematical programs with equilibrium constraints,, Proceedings of the ICKS'04, 2004 (2004), 206.
doi: 10.1109/ICKS.2004.1313426. |
[8] |
M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems,, SIAM Journal on Optimization, 12 (2001), 436.
doi: 10.1137/S1052623400380365. |
[9] |
S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems,, SIAM Journal on Optimization, 15 (2005), 593.
doi: 10.1137/S1052623403421516. |
[10] |
Y. C. Liang, X. D. Zhu and G. H. Lin, Necessary optimality conditions for mathematical programs with second-order cone complementarity constraints,, Set-Valued and Variational Analysis, 22 (2014), 59.
doi: 10.1007/s11228-013-0250-7. |
[11] |
Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,, Cambridge University Press, (1996).
doi: 10.1017/CBO9780511983658. |
[12] |
J. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equlilibrium Constraints: Theory, Applications, and Numerical Results,, Kluwer Academic Publisher, (1998).
doi: 10.1007/978-1-4757-2825-5. |
[13] |
J. V. Outrata and D. F. Sun, On the coderivative of the projection operator onto the second order cone,, Set-Valued Analysis, 16 (2008), 999.
doi: 10.1007/s11228-008-0092-x. |
[14] |
T. Yan and M. Fukushima, Smoothing method for mathematical programs with symmetric cone complementarity,, Optimization, 60 (2011), 113.
doi: 10.1080/02331934.2010.541458. |
[15] |
H. Yamamura, T. Okuno, S. Hayashi and M. Fukushima, A smoothing SQP method for mathematical programs with linear second-order cone complementarity constraints,, Pacific Journal of Optimization, 9 (2013), 345.
|
[16] |
J. J. Ye, D. L. Zhu and Q. J. Zhu, Exact penalization and neccessary conditions for generalized bilevel programming problems,, SIAM Journal on Optimizaion, 7 (1997), 481.
doi: 10.1137/S1052623493257344. |
[17] |
Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued Analysis, 19 (2011), 609.
doi: 10.1007/s11228-011-0190-z. |
show all references
References:
[1] |
F. Alizadeh and D. Goldfarb, Second-order cone programming,, Mathematical Programming, 95 (2003), 3.
doi: 10.1007/s10107-002-0339-5. |
[2] |
J. S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones,, Mathematical Programming, 101 (2004), 95.
doi: 10.1007/s10107-004-0538-3. |
[3] |
J. S. Chen and S. Pan, A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs,, Pacific Journal of Optimization, 8 (2012), 33.
|
[4] |
X. D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems,, Computational Optimization and Applications, 25 (2003), 39.
doi: 10.1023/A:1022996819381. |
[5] |
Y. Chen and M. Florian, The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions,, Optimization, 32 (1995), 193.
doi: 10.1080/02331939508844048. |
[6] |
U. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford Mathematical Monographs, (1994).
|
[7] |
M. Fukushima and G. H. Lin, Smoothing methods for mathematical programs with equilibrium constraints,, Proceedings of the ICKS'04, 2004 (2004), 206.
doi: 10.1109/ICKS.2004.1313426. |
[8] |
M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems,, SIAM Journal on Optimization, 12 (2001), 436.
doi: 10.1137/S1052623400380365. |
[9] |
S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems,, SIAM Journal on Optimization, 15 (2005), 593.
doi: 10.1137/S1052623403421516. |
[10] |
Y. C. Liang, X. D. Zhu and G. H. Lin, Necessary optimality conditions for mathematical programs with second-order cone complementarity constraints,, Set-Valued and Variational Analysis, 22 (2014), 59.
doi: 10.1007/s11228-013-0250-7. |
[11] |
Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,, Cambridge University Press, (1996).
doi: 10.1017/CBO9780511983658. |
[12] |
J. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equlilibrium Constraints: Theory, Applications, and Numerical Results,, Kluwer Academic Publisher, (1998).
doi: 10.1007/978-1-4757-2825-5. |
[13] |
J. V. Outrata and D. F. Sun, On the coderivative of the projection operator onto the second order cone,, Set-Valued Analysis, 16 (2008), 999.
doi: 10.1007/s11228-008-0092-x. |
[14] |
T. Yan and M. Fukushima, Smoothing method for mathematical programs with symmetric cone complementarity,, Optimization, 60 (2011), 113.
doi: 10.1080/02331934.2010.541458. |
[15] |
H. Yamamura, T. Okuno, S. Hayashi and M. Fukushima, A smoothing SQP method for mathematical programs with linear second-order cone complementarity constraints,, Pacific Journal of Optimization, 9 (2013), 345.
|
[16] |
J. J. Ye, D. L. Zhu and Q. J. Zhu, Exact penalization and neccessary conditions for generalized bilevel programming problems,, SIAM Journal on Optimizaion, 7 (1997), 481.
doi: 10.1137/S1052623493257344. |
[17] |
Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued Analysis, 19 (2011), 609.
doi: 10.1007/s11228-011-0190-z. |
[1] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[2] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[3] |
Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027 |
[4] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[5] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[6] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[7] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[8] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[9] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[10] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[11] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[12] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[13] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[14] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[15] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[16] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[17] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]