July  2016, 12(3): 1031-1039. doi: 10.3934/jimo.2016.12.1031

$E$-super efficiency of set-valued optimization problems involving improvement sets

1. 

College of Mathematics and Statistics, Chongqing University of Technology, Chongqing 400054, China

2. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047

3. 

College of Mathematics Science, Chongqing normal University, Chongqing 400047, China

Received  November 2014 Revised  May 2015 Published  September 2015

In this paper, $E$-super efficiency of set-valued optimization problems is investigated. Firstly, based on the improvement set, a new notion of $E$-super efficient point is introduced in real locally convex spaces. Secondly, under the assumption of near $E$-subconvexlikeness of set-valued maps, scalarization theorems of set-valued optimization problems are established in the sense of $E$-super efficiency. Finally, Lagrange multiplier theorems of set-valued optimization problems are obtained in the sense of $E$-super efficiency.
Citation: Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031
References:
[1]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, J. Math. Anal. Appl., 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[2]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization,, Trans. Am. Math. Soc., 338 (1993), 105.  doi: 10.1090/S0002-9947-1993-1098432-5.  Google Scholar

[3]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space,, Math. Methods Oper. Res., 50 (1999), 373.  doi: 10.1007/s001860050076.  Google Scholar

[4]

M. Chicco, F. Mignanego, L. Pusillo and S. Tijs, Vector optimization problems via improvement sets,, J. Optim. Theory Appl., 150 (2011), 516.  doi: 10.1007/s10957-011-9851-1.  Google Scholar

[5]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, J. Math. Anal. Appl., 22 (1968), 618.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[6]

C. Gutiérrez, B. Jiménez and V. Novo, Improvement sets and vector optimization,, Eur. J. Oper. Res., 223 (2012), 304.   Google Scholar

[7]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[8]

H. Kuhn and A. Tucker, Nonlinear programming,, in Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, (1950), 481.   Google Scholar

[9]

S. S. Kutateladze, Convex $\epsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[10]

T. Y. Li, Y. H. Xu and C. X. Zhu, $\varepsilon$-Strictly efficient solutions of vector optimization problems with set-valued maps,, Asia. Pacific. J. Oper. Res., 24 (2007), 841.  doi: 10.1142/S0217595907001577.  Google Scholar

[11]

Z. M. Li, A theorem of the alternative and its application to the optimization of set-valued maps,, J. Optim. Theory Appl., 100 (1999), 365.  doi: 10.1023/A:1021786303883.  Google Scholar

[12]

A. Mehra, Super efficiency in vector optimization with nearly convexlike set-valued maps,, J. Math. Anal. Appl., 276 (2002), 815.  doi: 10.1016/S0022-247X(02)00452-3.  Google Scholar

[13]

Q. S. Qiu and W. T. Fu, The connectedness of the super efficient solution sets of the optimization problem for a set-valued mapping,, J. Sys. Sci. & Math. Scis., 22 (2002), 107.   Google Scholar

[14]

W. D. Rong and Y. N. Wu, Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps,, Math. Methods Oper. Res., 48 (1998), 247.  doi: 10.1007/s001860050026.  Google Scholar

[15]

W. D. Rong and Y. N. Wu, $\epsilon$-Weak minimal solutions of vector optimization problems with set-valued maps,, J. Optim. Theory Appl., 106 (2000), 569.  doi: 10.1023/A:1004657412928.  Google Scholar

[16]

L. A. Tuan, $\varepsilon$-Optimality conditions for vector optimization problems with set-valued maps,, Numer. Func. Anal. Optim., 31 (2010), 78.  doi: 10.1080/01630560903499845.  Google Scholar

[17]

L. Y. Xia and J. H. Qiu, Superefficiency in vector optimization with nearly subconvexlike set-valued maps,, J. Optim. Theory Appl., 136 (2008), 125.  doi: 10.1007/s10957-007-9291-0.  Google Scholar

[18]

Y. H. Xu and S. Y. Liu, Super efficiency in the nearly cone-subconvexlike vector optimization with set-valued functions,, Acta. Math. Sci. B, 25 (2005), 152.   Google Scholar

[19]

X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, J. Optim. Theory Appl., 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

[20]

C. Zălinescu, Convex Analysis in General Vector Spaces,, World Scientific, (2002).  doi: 10.1142/9789812777096.  Google Scholar

[21]

K. Q. Zhao and X. M. Yang, $E$-proper saddle points and $E$-proper duality in vector optimization with set-valued maps,, Taiwan. J. Math., 18 (2014), 483.  doi: 10.11650/tjm.18.2014.3473.  Google Scholar

[22]

K. Q. Zhao and X. M. Yang, $E$-Benson proper efficiency in vector optimization,, Optimization, 64 (2015), 739.  doi: 10.1080/02331934.2013.798321.  Google Scholar

[23]

K. Q. Zhao and X. M. Yang, Characterizations of the $E$-Benson proper efficiency in vector optimization problems,, Numer. Algebr. Control. Optim., 3 (2013), 643.  doi: 10.3934/naco.2013.3.643.  Google Scholar

[24]

K. Q. Zhao, X. M. Yang and J. W. Peng, Weak $E$-optimal solution in vector optimization,, Taiwan. J. Math., 17 (2013), 1287.   Google Scholar

[25]

X. Y. Zheng, Proper efficiency in locally convex topological vector spaces,, J. Optim. Theory Appl., 94 (1997), 469.  doi: 10.1023/A:1022648115446.  Google Scholar

[26]

Z. A. Zhou and J. W. Peng, Scalarization of set-valued optimization problems with generalization cone subconvexlikeness in real ordered linear spaces,, J. Optim. Theory Appl., 154 (2012), 830.  doi: 10.1007/s10957-012-0045-2.  Google Scholar

show all references

References:
[1]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, J. Math. Anal. Appl., 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[2]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization,, Trans. Am. Math. Soc., 338 (1993), 105.  doi: 10.1090/S0002-9947-1993-1098432-5.  Google Scholar

[3]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space,, Math. Methods Oper. Res., 50 (1999), 373.  doi: 10.1007/s001860050076.  Google Scholar

[4]

M. Chicco, F. Mignanego, L. Pusillo and S. Tijs, Vector optimization problems via improvement sets,, J. Optim. Theory Appl., 150 (2011), 516.  doi: 10.1007/s10957-011-9851-1.  Google Scholar

[5]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, J. Math. Anal. Appl., 22 (1968), 618.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[6]

C. Gutiérrez, B. Jiménez and V. Novo, Improvement sets and vector optimization,, Eur. J. Oper. Res., 223 (2012), 304.   Google Scholar

[7]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[8]

H. Kuhn and A. Tucker, Nonlinear programming,, in Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, (1950), 481.   Google Scholar

[9]

S. S. Kutateladze, Convex $\epsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[10]

T. Y. Li, Y. H. Xu and C. X. Zhu, $\varepsilon$-Strictly efficient solutions of vector optimization problems with set-valued maps,, Asia. Pacific. J. Oper. Res., 24 (2007), 841.  doi: 10.1142/S0217595907001577.  Google Scholar

[11]

Z. M. Li, A theorem of the alternative and its application to the optimization of set-valued maps,, J. Optim. Theory Appl., 100 (1999), 365.  doi: 10.1023/A:1021786303883.  Google Scholar

[12]

A. Mehra, Super efficiency in vector optimization with nearly convexlike set-valued maps,, J. Math. Anal. Appl., 276 (2002), 815.  doi: 10.1016/S0022-247X(02)00452-3.  Google Scholar

[13]

Q. S. Qiu and W. T. Fu, The connectedness of the super efficient solution sets of the optimization problem for a set-valued mapping,, J. Sys. Sci. & Math. Scis., 22 (2002), 107.   Google Scholar

[14]

W. D. Rong and Y. N. Wu, Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps,, Math. Methods Oper. Res., 48 (1998), 247.  doi: 10.1007/s001860050026.  Google Scholar

[15]

W. D. Rong and Y. N. Wu, $\epsilon$-Weak minimal solutions of vector optimization problems with set-valued maps,, J. Optim. Theory Appl., 106 (2000), 569.  doi: 10.1023/A:1004657412928.  Google Scholar

[16]

L. A. Tuan, $\varepsilon$-Optimality conditions for vector optimization problems with set-valued maps,, Numer. Func. Anal. Optim., 31 (2010), 78.  doi: 10.1080/01630560903499845.  Google Scholar

[17]

L. Y. Xia and J. H. Qiu, Superefficiency in vector optimization with nearly subconvexlike set-valued maps,, J. Optim. Theory Appl., 136 (2008), 125.  doi: 10.1007/s10957-007-9291-0.  Google Scholar

[18]

Y. H. Xu and S. Y. Liu, Super efficiency in the nearly cone-subconvexlike vector optimization with set-valued functions,, Acta. Math. Sci. B, 25 (2005), 152.   Google Scholar

[19]

X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, J. Optim. Theory Appl., 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

[20]

C. Zălinescu, Convex Analysis in General Vector Spaces,, World Scientific, (2002).  doi: 10.1142/9789812777096.  Google Scholar

[21]

K. Q. Zhao and X. M. Yang, $E$-proper saddle points and $E$-proper duality in vector optimization with set-valued maps,, Taiwan. J. Math., 18 (2014), 483.  doi: 10.11650/tjm.18.2014.3473.  Google Scholar

[22]

K. Q. Zhao and X. M. Yang, $E$-Benson proper efficiency in vector optimization,, Optimization, 64 (2015), 739.  doi: 10.1080/02331934.2013.798321.  Google Scholar

[23]

K. Q. Zhao and X. M. Yang, Characterizations of the $E$-Benson proper efficiency in vector optimization problems,, Numer. Algebr. Control. Optim., 3 (2013), 643.  doi: 10.3934/naco.2013.3.643.  Google Scholar

[24]

K. Q. Zhao, X. M. Yang and J. W. Peng, Weak $E$-optimal solution in vector optimization,, Taiwan. J. Math., 17 (2013), 1287.   Google Scholar

[25]

X. Y. Zheng, Proper efficiency in locally convex topological vector spaces,, J. Optim. Theory Appl., 94 (1997), 469.  doi: 10.1023/A:1022648115446.  Google Scholar

[26]

Z. A. Zhou and J. W. Peng, Scalarization of set-valued optimization problems with generalization cone subconvexlikeness in real ordered linear spaces,, J. Optim. Theory Appl., 154 (2012), 830.  doi: 10.1007/s10957-012-0045-2.  Google Scholar

[1]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[2]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[5]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[6]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[7]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]