-
Previous Article
Explicit solution for the stationary distribution of a discrete-time finite buffer queue
- JIMO Home
- This Issue
-
Next Article
Production planning in a three-stock reverse-logistics system with deteriorating items under a periodic review policy
An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity
1. | School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran |
2. | Department of Mathematics, Bhangar Mahavidyalaya, Bhangar-743502, South 24 Parganas, India |
References:
[1] |
S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments,, Journal of the Operational Research Society, 46 (1995), 658. Google Scholar |
[2] |
M. Bakker, J. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001,, European journal of Operational Research, 221 (2012), 275.
doi: 10.1016/j.ejor.2012.03.004. |
[3] |
C. T. Chang, L. Y. Ouyang and Y. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity,, Applied Mathematical Modelling, 27 (2003), 983.
doi: 10.1016/S0307-904X(03)00131-8. |
[4] |
C. T. Chang, An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity,, Int. J. Prod.Econ., 88 (2004), 307.
doi: 10.1016/S0925-5273(03)00192-0. |
[5] |
C. T. Chang, S. J. Wu and L. C. Chen, Optimal payment time with deteriorating items under inflation and permissible delay in payment,, International Journal of system Science, 40 (2009), 985.
doi: 10.1080/00207720902974561. |
[6] |
J. M. Chen, An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting,, Int. J. Prod.Econ., 55 (1998), 21.
doi: 10.1016/S0925-5273(98)00011-5. |
[7] |
C. Y. Chiu, M. F. Yang, C. Jung and Y. Lin, Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity,, Journal of Industrial and Management Optimization, 9 (2013), 945.
doi: 10.3934/jimo.2013.9.945. |
[8] |
K. J. Chung, An EOQ model with defective items and partially permissible delay in payments linked to order quantity derived analytically in the supply chain management,, Appl. Math. Model., 37 (2013), 2317.
doi: 10.1016/j.apm.2012.05.014. |
[9] |
K. J. Chung and P. S. Ting, The inventory model under supplier's partial trade credit policy in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 1175.
doi: 10.3934/jimo.2015.11.1175. |
[10] |
M. Ghoreishi, A. Mirzazadeh, G. W. Weber, A. Turkey and I. Nakhai-Kamalabadi, Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns,, Journal of Industrial and Management Optimization, 11 (2015), 933.
doi: 10.3934/jimo.2015.11.933. |
[11] |
S. K. Goyal, EOQ under conditions of permissible delay in payments,, Journal of the Operational Research Society, 36 (1985), 335. Google Scholar |
[12] |
Y. F. Huang, Optimal retailer's ordering polices in the EOQ model under trade credit financing,, Journal of Operational Research, 176 (2003), 911. Google Scholar |
[13] |
A. Jamal, B. Sarker and S. Wang, Optimal payment time for a retailer under permitted delay of payment by the wholesaler,, Int. J. Prod.Econ., 66 (2000), 59.
doi: 10.1016/S0925-5273(99)00108-5. |
[14] |
N. Khanlarzade, B. YousefiYegane, I. NakhaiKamalabadi and H. Farughid, Inventory control with deteriorating items: A state-of-the-art literature review,, International Journal of Industrial Engineering Computations, 5 (2014), 179.
doi: 10.5267/j.ijiec.2013.11.003. |
[15] |
R. Li, H. Lan and J. R. Mawhinney, A review on deteriorating inventory study,, Journal of Service Science and Management, 3 (2010), 117.
doi: 10.4236/jssm.2010.31015. |
[16] |
H. Liao and Y. Chen, Optimal payment time for retailers' inventory system,, International Journal of System Science, 34 (2003), 245.
doi: 10.1080/0020772031000158546. |
[17] |
L. Y. Ouyang, C. T. Yang, Y. T. Chan and L. E. Cárdenas-Barrón, A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity,, Applied Mathematics and Computation, 224 (2013), 268.
doi: 10.1016/j.amc.2013.08.062. |
[18] |
B. Pal, S. S. Sana and K. S. Chaudhuri, Three stage trade credit policy in a three-layer supply chain: A production inventory model,, International Journal of Systems Science, 45 (2014), 1844.
doi: 10.1080/00207721.2012.757383. |
[19] |
J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting,, Int. J. Prod. Econ., 53 (1997), 171.
doi: 10.1016/S0925-5273(97)00112-6. |
[20] |
S. Sana, An economic order quantity model for nonconforming quality products,, Service Science, 4 (2012), 331.
doi: 10.1287/serv.1120.0027. |
[21] |
B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate,, Mathematical and Computer Modelling, 55 (2012), 367.
doi: 10.1016/j.mcm.2011.08.009. |
[22] |
T. Sarkar, S. K. Ghosh and K. S. Chaudhuri, An optimal inventory replenishment policy for a deteriorating item with time quadratic demand and time dependent partial backlogging with shortages in all cycles,, Applied Mathematics and Computation, 218 (2012), 9147.
doi: 10.1016/j.amc.2012.02.072. |
[23] |
H. Soni, N. H. Shah and C. K. Jaggi, Inventory models and trade credit,, J. Con. Cyb., 39 (2010), 867.
|
[24] |
A. A. Taleizadeh and M. Nematollahi, An inventory control problem for deteriorating items with back-ordering and financial considerations,, Appl. Math.Model., 38 (2014), 93.
doi: 10.1016/j.apm.2013.05.065. |
[25] |
A. A. Taleizadeh, D. W. Pentico, M. S. Jabal-ameli and M. Aryanezhad, An EOQ model with partial delayed payment and partial backordering,, Omega, 41 (2013), 354.
doi: 10.1016/j.omega.2012.03.008. |
[26] |
P. S. Ting, The EPQ model with deteriorating items under two levels of trade credit in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 479.
doi: 10.3934/jimo.2015.11.479. |
[27] |
M. Valliathal and R. Uthayakumar, An EOQ model for perishable items under stock and time dependent selling rate with shortages,, ARPN Journal of Engineering and Applied Sciences, 4 (2009), 8. Google Scholar |
[28] |
G. A. Widyadana, L. E. Cárdenas-Barrón and H. M. Wee, Economic order quantity model for deteriorating items with planned backorder level,, Mathematical and Computer Modelling, 54 (2011), 1569.
doi: 10.1016/j.mcm.2011.04.028. |
show all references
References:
[1] |
S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments,, Journal of the Operational Research Society, 46 (1995), 658. Google Scholar |
[2] |
M. Bakker, J. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001,, European journal of Operational Research, 221 (2012), 275.
doi: 10.1016/j.ejor.2012.03.004. |
[3] |
C. T. Chang, L. Y. Ouyang and Y. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity,, Applied Mathematical Modelling, 27 (2003), 983.
doi: 10.1016/S0307-904X(03)00131-8. |
[4] |
C. T. Chang, An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity,, Int. J. Prod.Econ., 88 (2004), 307.
doi: 10.1016/S0925-5273(03)00192-0. |
[5] |
C. T. Chang, S. J. Wu and L. C. Chen, Optimal payment time with deteriorating items under inflation and permissible delay in payment,, International Journal of system Science, 40 (2009), 985.
doi: 10.1080/00207720902974561. |
[6] |
J. M. Chen, An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting,, Int. J. Prod.Econ., 55 (1998), 21.
doi: 10.1016/S0925-5273(98)00011-5. |
[7] |
C. Y. Chiu, M. F. Yang, C. Jung and Y. Lin, Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity,, Journal of Industrial and Management Optimization, 9 (2013), 945.
doi: 10.3934/jimo.2013.9.945. |
[8] |
K. J. Chung, An EOQ model with defective items and partially permissible delay in payments linked to order quantity derived analytically in the supply chain management,, Appl. Math. Model., 37 (2013), 2317.
doi: 10.1016/j.apm.2012.05.014. |
[9] |
K. J. Chung and P. S. Ting, The inventory model under supplier's partial trade credit policy in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 1175.
doi: 10.3934/jimo.2015.11.1175. |
[10] |
M. Ghoreishi, A. Mirzazadeh, G. W. Weber, A. Turkey and I. Nakhai-Kamalabadi, Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns,, Journal of Industrial and Management Optimization, 11 (2015), 933.
doi: 10.3934/jimo.2015.11.933. |
[11] |
S. K. Goyal, EOQ under conditions of permissible delay in payments,, Journal of the Operational Research Society, 36 (1985), 335. Google Scholar |
[12] |
Y. F. Huang, Optimal retailer's ordering polices in the EOQ model under trade credit financing,, Journal of Operational Research, 176 (2003), 911. Google Scholar |
[13] |
A. Jamal, B. Sarker and S. Wang, Optimal payment time for a retailer under permitted delay of payment by the wholesaler,, Int. J. Prod.Econ., 66 (2000), 59.
doi: 10.1016/S0925-5273(99)00108-5. |
[14] |
N. Khanlarzade, B. YousefiYegane, I. NakhaiKamalabadi and H. Farughid, Inventory control with deteriorating items: A state-of-the-art literature review,, International Journal of Industrial Engineering Computations, 5 (2014), 179.
doi: 10.5267/j.ijiec.2013.11.003. |
[15] |
R. Li, H. Lan and J. R. Mawhinney, A review on deteriorating inventory study,, Journal of Service Science and Management, 3 (2010), 117.
doi: 10.4236/jssm.2010.31015. |
[16] |
H. Liao and Y. Chen, Optimal payment time for retailers' inventory system,, International Journal of System Science, 34 (2003), 245.
doi: 10.1080/0020772031000158546. |
[17] |
L. Y. Ouyang, C. T. Yang, Y. T. Chan and L. E. Cárdenas-Barrón, A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity,, Applied Mathematics and Computation, 224 (2013), 268.
doi: 10.1016/j.amc.2013.08.062. |
[18] |
B. Pal, S. S. Sana and K. S. Chaudhuri, Three stage trade credit policy in a three-layer supply chain: A production inventory model,, International Journal of Systems Science, 45 (2014), 1844.
doi: 10.1080/00207721.2012.757383. |
[19] |
J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting,, Int. J. Prod. Econ., 53 (1997), 171.
doi: 10.1016/S0925-5273(97)00112-6. |
[20] |
S. Sana, An economic order quantity model for nonconforming quality products,, Service Science, 4 (2012), 331.
doi: 10.1287/serv.1120.0027. |
[21] |
B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate,, Mathematical and Computer Modelling, 55 (2012), 367.
doi: 10.1016/j.mcm.2011.08.009. |
[22] |
T. Sarkar, S. K. Ghosh and K. S. Chaudhuri, An optimal inventory replenishment policy for a deteriorating item with time quadratic demand and time dependent partial backlogging with shortages in all cycles,, Applied Mathematics and Computation, 218 (2012), 9147.
doi: 10.1016/j.amc.2012.02.072. |
[23] |
H. Soni, N. H. Shah and C. K. Jaggi, Inventory models and trade credit,, J. Con. Cyb., 39 (2010), 867.
|
[24] |
A. A. Taleizadeh and M. Nematollahi, An inventory control problem for deteriorating items with back-ordering and financial considerations,, Appl. Math.Model., 38 (2014), 93.
doi: 10.1016/j.apm.2013.05.065. |
[25] |
A. A. Taleizadeh, D. W. Pentico, M. S. Jabal-ameli and M. Aryanezhad, An EOQ model with partial delayed payment and partial backordering,, Omega, 41 (2013), 354.
doi: 10.1016/j.omega.2012.03.008. |
[26] |
P. S. Ting, The EPQ model with deteriorating items under two levels of trade credit in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 479.
doi: 10.3934/jimo.2015.11.479. |
[27] |
M. Valliathal and R. Uthayakumar, An EOQ model for perishable items under stock and time dependent selling rate with shortages,, ARPN Journal of Engineering and Applied Sciences, 4 (2009), 8. Google Scholar |
[28] |
G. A. Widyadana, L. E. Cárdenas-Barrón and H. M. Wee, Economic order quantity model for deteriorating items with planned backorder level,, Mathematical and Computer Modelling, 54 (2011), 1569.
doi: 10.1016/j.mcm.2011.04.028. |
[1] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[2] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[3] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[4] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[5] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[6] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[7] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[8] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[9] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[10] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[11] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[12] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[13] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]