Citation: |
[1] |
S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, Journal of the Operational Research Society, 46 (1995), 658-662. |
[2] |
M. Bakker, J. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European journal of Operational Research, 221 (2012), 275-284.doi: 10.1016/j.ejor.2012.03.004. |
[3] |
C. T. Chang, L. Y. Ouyang and Y. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity, Applied Mathematical Modelling, 27 (2003), 983-996.doi: 10.1016/S0307-904X(03)00131-8. |
[4] |
C. T. Chang, An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity, Int. J. Prod.Econ., 88 (2004), 307-316.doi: 10.1016/S0925-5273(03)00192-0. |
[5] |
C. T. Chang, S. J. Wu and L. C. Chen, Optimal payment time with deteriorating items under inflation and permissible delay in payment, International Journal of system Science, 40 (2009), 985-993.doi: 10.1080/00207720902974561. |
[6] |
J. M. Chen, An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting, Int. J. Prod.Econ., 55 (1998), 21-30.doi: 10.1016/S0925-5273(98)00011-5. |
[7] |
C. Y. Chiu, M. F. Yang, C. Jung and Y. Lin, Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity, Journal of Industrial and Management Optimization, 9 (2013), 945-965.doi: 10.3934/jimo.2013.9.945. |
[8] |
K. J. Chung, An EOQ model with defective items and partially permissible delay in payments linked to order quantity derived analytically in the supply chain management, Appl. Math. Model., 37 (2013), 2317-2326.doi: 10.1016/j.apm.2012.05.014. |
[9] |
K. J. Chung and P. S. Ting, The inventory model under supplier's partial trade credit policy in a supply chain system, Journal of Industrial and Management Optimization, 11 (2015), 1175-1183.doi: 10.3934/jimo.2015.11.1175. |
[10] |
M. Ghoreishi, A. Mirzazadeh, G. W. Weber, A. Turkey and I. Nakhai-Kamalabadi, Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns, Journal of Industrial and Management Optimization, 11 (2015), 933-949.doi: 10.3934/jimo.2015.11.933. |
[11] |
S. K. Goyal, EOQ under conditions of permissible delay in payments, Journal of the Operational Research Society, 36 (1985), 335-338. |
[12] |
Y. F. Huang, Optimal retailer's ordering polices in the EOQ model under trade credit financing, Journal of Operational Research, 176 (2003), 911-924. |
[13] |
A. Jamal, B. Sarker and S. Wang, Optimal payment time for a retailer under permitted delay of payment by the wholesaler, Int. J. Prod.Econ., 66 (2000), 59-66.doi: 10.1016/S0925-5273(99)00108-5. |
[14] |
N. Khanlarzade, B. YousefiYegane, I. NakhaiKamalabadi and H. Farughid, Inventory control with deteriorating items: A state-of-the-art literature review, International Journal of Industrial Engineering Computations, 5 (2014), 179-198.doi: 10.5267/j.ijiec.2013.11.003. |
[15] |
R. Li, H. Lan and J. R. Mawhinney, A review on deteriorating inventory study, Journal of Service Science and Management, 3 (2010), 117-129.doi: 10.4236/jssm.2010.31015. |
[16] |
H. Liao and Y. Chen, Optimal payment time for retailers' inventory system, International Journal of System Science, 34 (2003), 245-253.doi: 10.1080/0020772031000158546. |
[17] |
L. Y. Ouyang, C. T. Yang, Y. T. Chan and L. E. Cárdenas-Barrón, A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity, Applied Mathematics and Computation, 224 (2013), 268-277.doi: 10.1016/j.amc.2013.08.062. |
[18] |
B. Pal, S. S. Sana and K. S. Chaudhuri, Three stage trade credit policy in a three-layer supply chain: A production inventory model, International Journal of Systems Science, 45 (2014), 1844-1868.doi: 10.1080/00207721.2012.757383. |
[19] |
J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting, Int. J. Prod. Econ., 53 (1997), 171-180.doi: 10.1016/S0925-5273(97)00112-6. |
[20] |
S. Sana, An economic order quantity model for nonconforming quality products, Service Science, 4 (2012), 331-348.doi: 10.1287/serv.1120.0027. |
[21] |
B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate, Mathematical and Computer Modelling, 55 (2012), 367-377.doi: 10.1016/j.mcm.2011.08.009. |
[22] |
T. Sarkar, S. K. Ghosh and K. S. Chaudhuri, An optimal inventory replenishment policy for a deteriorating item with time quadratic demand and time dependent partial backlogging with shortages in all cycles, Applied Mathematics and Computation, 218 (2012), 9147-9155.doi: 10.1016/j.amc.2012.02.072. |
[23] |
H. Soni, N. H. Shah and C. K. Jaggi, Inventory models and trade credit, J. Con. Cyb., 39 (2010), 867-882. |
[24] |
A. A. Taleizadeh and M. Nematollahi, An inventory control problem for deteriorating items with back-ordering and financial considerations, Appl. Math.Model., 38 (2014), 93-109.doi: 10.1016/j.apm.2013.05.065. |
[25] |
A. A. Taleizadeh, D. W. Pentico, M. S. Jabal-ameli and M. Aryanezhad, An EOQ model with partial delayed payment and partial backordering, Omega, 41 (2013), 354-368.doi: 10.1016/j.omega.2012.03.008. |
[26] |
P. S. Ting, The EPQ model with deteriorating items under two levels of trade credit in a supply chain system, Journal of Industrial and Management Optimization, 11 (2015), 479-492.doi: 10.3934/jimo.2015.11.479. |
[27] |
M. Valliathal and R. Uthayakumar, An EOQ model for perishable items under stock and time dependent selling rate with shortages, ARPN Journal of Engineering and Applied Sciences, 4 (2009), 8-14. |
[28] |
G. A. Widyadana, L. E. Cárdenas-Barrón and H. M. Wee, Economic order quantity model for deteriorating items with planned backorder level, Mathematical and Computer Modelling, 54 (2011), 1569-1575.doi: 10.1016/j.mcm.2011.04.028. |