• Previous Article
    Some characterizations of the approximate solutions to generalized vector equilibrium problems
  • JIMO Home
  • This Issue
  • Next Article
    An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity
July  2016, 12(3): 1121-1133. doi: 10.3934/jimo.2016.12.1121

Explicit solution for the stationary distribution of a discrete-time finite buffer queue

1. 

Department of Mathematics, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea

2. 

Department of Mathematics Education, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea

Received  October 2013 Revised  February 2015 Published  September 2015

We consider a discrete-time single server queue with finite buffer. The customers arrive according to a discrete-time batch Markovian arrival process with geometrically distributed batch sizes and the service time is one time slot. For this queueing system, we obtain an exact closed-form expression for the stationary queue length distribution. The expression is in a form of mixed matrix-geometric solution.
Citation: Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121
References:
[1]

N. Akar, N. C. Oǧuz and K. Sohraby, Matrix-geometric solutions of M/G/1-type Markov chains: A unifying generalized state-space approach,, IEEE Journal on Selected Areas in Communications, 16 (1998), 626.  doi: 10.1109/49.700901.  Google Scholar

[2]

C. Blondia, A discrete-time batch Markovian arrival process as B-ISDN traffic model,, Belgian J. Oper. Res. Statist. Comput. Sci., 32 (1993), 3.   Google Scholar

[3]

C. Blondia and O. Casals, Performance analysis of statistical multiplexing of VBR sources,, Proc. IEEE INFOCOM, (1992), 828.  doi: 10.1109/INFCOM.1992.263492.  Google Scholar

[4]

C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5.  doi: 10.1016/0166-5316(92)90064-N.  Google Scholar

[5]

M. L. Chaudhry and U. C. Gupta, Queue length distributions at various epochs in discrete-time D-MAP/G/1/N queue and their numerical evaluations,, Information and Management Science, 14 (2003), 67.   Google Scholar

[6]

C. Herrmann, The complete analysis of the discrete time finite DBMAP/G/1/N queue,, Performance Evaluation, 43 (2001), 95.  doi: 10.1016/S0166-5316(00)00037-7.  Google Scholar

[7]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on Statistics and Applied Probability, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[8]

D. Moltchanov, Y. Koucheryavy and J. Harju, Non-preemptive $\sum$$_i D$-$BMAP_i$/D/1/Kqueuing system modeling the frame transmission process over wireless channels,, in 19th International Teletraffic Congress (ITC19): Performance Challenges for Efficient Next Generation Networks, (2005), 1335.   Google Scholar

[9]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).   Google Scholar

[10]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).   Google Scholar

[11]

J. A. Silvester, N. L. S. Fonseca and S. S. Wang, D-BMAP models for performance evaluation of ATM networks,, in Performance Modelling and Evaluation of ATM Networks, (1995), 325.  doi: 10.1007/978-0-387-34881-0_17.  Google Scholar

[12]

S. S. Wang and J. A. Silvester, A discrete-time performance model for integrated services in ATM multiplexers,, in Proc. IEEE GLOBECOM, (1993), 757.  doi: 10.1109/GLOCOM.1993.318182.  Google Scholar

[13]

J.-A. Zhao, B. Li, C.-W. Kok and I. Ahmad, MPEG-4 video transmission over wireless networks: A link level performance study,, Wireless Networks, 10 (2004), 133.  doi: 10.1023/B:WINE.0000013078.74259.13.  Google Scholar

show all references

References:
[1]

N. Akar, N. C. Oǧuz and K. Sohraby, Matrix-geometric solutions of M/G/1-type Markov chains: A unifying generalized state-space approach,, IEEE Journal on Selected Areas in Communications, 16 (1998), 626.  doi: 10.1109/49.700901.  Google Scholar

[2]

C. Blondia, A discrete-time batch Markovian arrival process as B-ISDN traffic model,, Belgian J. Oper. Res. Statist. Comput. Sci., 32 (1993), 3.   Google Scholar

[3]

C. Blondia and O. Casals, Performance analysis of statistical multiplexing of VBR sources,, Proc. IEEE INFOCOM, (1992), 828.  doi: 10.1109/INFCOM.1992.263492.  Google Scholar

[4]

C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5.  doi: 10.1016/0166-5316(92)90064-N.  Google Scholar

[5]

M. L. Chaudhry and U. C. Gupta, Queue length distributions at various epochs in discrete-time D-MAP/G/1/N queue and their numerical evaluations,, Information and Management Science, 14 (2003), 67.   Google Scholar

[6]

C. Herrmann, The complete analysis of the discrete time finite DBMAP/G/1/N queue,, Performance Evaluation, 43 (2001), 95.  doi: 10.1016/S0166-5316(00)00037-7.  Google Scholar

[7]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on Statistics and Applied Probability, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[8]

D. Moltchanov, Y. Koucheryavy and J. Harju, Non-preemptive $\sum$$_i D$-$BMAP_i$/D/1/Kqueuing system modeling the frame transmission process over wireless channels,, in 19th International Teletraffic Congress (ITC19): Performance Challenges for Efficient Next Generation Networks, (2005), 1335.   Google Scholar

[9]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).   Google Scholar

[10]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).   Google Scholar

[11]

J. A. Silvester, N. L. S. Fonseca and S. S. Wang, D-BMAP models for performance evaluation of ATM networks,, in Performance Modelling and Evaluation of ATM Networks, (1995), 325.  doi: 10.1007/978-0-387-34881-0_17.  Google Scholar

[12]

S. S. Wang and J. A. Silvester, A discrete-time performance model for integrated services in ATM multiplexers,, in Proc. IEEE GLOBECOM, (1993), 757.  doi: 10.1109/GLOCOM.1993.318182.  Google Scholar

[13]

J.-A. Zhao, B. Li, C.-W. Kok and I. Ahmad, MPEG-4 video transmission over wireless networks: A link level performance study,, Wireless Networks, 10 (2004), 133.  doi: 10.1023/B:WINE.0000013078.74259.13.  Google Scholar

[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[4]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[5]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[8]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[9]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[10]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[11]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[12]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[13]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[17]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[18]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[19]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[20]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]