\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some characterizations of the approximate solutions to generalized vector equilibrium problems

Abstract Related Papers Cited by
  • In this paper, a scalarization result and a density theorem concerned with the sets of weakly efficient and efficient approximate solutions to a generalized vector equilibrium problem are given, respectively. By using the scalarization result and the density theorem, the connectedness of the sets of weakly efficient and efficient approximate solutions to the generalized vector equilibrium problem are established without the assumptions of monotonicity and compactness. The lower semicontinuity of weakly efficient and efficient approximate solution mappings to the parametric generalized vector equilibrium problem with perturbing both the objective mapping and the feasible region are obtained without the assumptions of monotonicity and compactness. Furthermore, the upper semicontinuity of weakly efficient approximate solution mapping and the Hausdorff upper semicontinuity of efficient approximate solution mapping to the parametric generalized vector equilibrium problem with perturbing both the objective mapping and the feasible region are also given under some suitable conditions.
    Mathematics Subject Classification: 90C31, 91B50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294 (2004), 699-711.doi: 10.1016/j.jmaa.2004.03.014.

    [2]

    L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems, J. Optim. Theory Appl., 135 (2007), 271-284.doi: 10.1007/s10957-007-9250-9.

    [3]

    L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008), 24-42.doi: 10.1080/01630560701873068.

    [4]

    L. Q. Anh and P. Q. Khanh, Continuity of solution maps of parametric quasiequilibrium problems, J. Glob. Optim., 46 (2010), 247-259.doi: 10.1007/s10898-009-9422-2.

    [5]

    J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York, 1984.

    [6]

    R. Brown, Topology, Ellis Horwood, New York, NY, 1988.

    [7]

    B. Chen, Q. Y. Liu, Z. B. Liu and N. J. Huang, Connectedness of approximate solutions set for vector equilibrium problems in Hausdorff topological vector spaces, Fixed Point Theory and Applications, 2011 (2011), p36.doi: 10.1186/1687-1812-2011-36.

    [8]

    B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56 (2013), 1515-1528.doi: 10.1007/s10898-012-9904-5.

    [9]

    C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009), 309-318.doi: 10.1007/s10898-008-9376-9.

    [10]

    Y. H. Cheng, On the connectedness of the solution set for the weak vector variational inequality, J. Math. Anal. Appl., 260 (2001), 1-5.doi: 10.1006/jmaa.2000.7389.

    [11]

    Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality, J. Glob. Optim., 32 (2005), 543-550.doi: 10.1007/s10898-004-2692-9.

    [12]

    Y. Gao, X. M. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems, J. Ind. Manag. Optim., 7 (2011), 483-496.doi: 10.3934/jimo.2011.7.483.

    [13]

    Y. Gao, X. M. Yang, J. Yang and H. Yan, Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps, J. Ind. Manag. Optim., 11 (2015), 673-683.doi: 10.3934/jimo.2015.11.673.

    [14]

    X. H. Gong, Connectedness of efficiency solution sets for set-valued maps in normed spaces, J. Optim. Theory Appl., 83 (1994), 83-96.doi: 10.1007/BF02191763.

    [15]

    X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems, J. Optim. Theory Appl., 108 (2001), 139-154.doi: 10.1023/A:1026418122905.

    [16]

    X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems, J. Optim. Theory Appl., 133 (2007), 151-161.doi: 10.1007/s10957-007-9196-y.

    [17]

    X.H. Gong and J.C. Yao, Connectedness of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 189-196.doi: 10.1007/s10957-008-9378-2.

    [18]

    X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 197-205.doi: 10.1007/s10957-008-9379-1.

    [19]

    X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46.doi: 10.1007/s10957-008-9429-8.

    [20]

    A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer, Berlin Heidelberg, New York, 2003.

    [21]

    Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems, Appl. Math. Lett., 28 (2014), 38-41.doi: 10.1016/j.aml.2013.09.006.

    [22]

    N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.doi: 10.1016/j.mcm.2005.06.010.

    [23]

    P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007), 329-339.doi: 10.1007/s10957-007-9190-4.

    [24]

    K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems, J. Glob. Optim., 41 (2008), 187-202.doi: 10.1007/s10898-007-9210-9.

    [25]

    G. M. Lee, D. S. Kim, B. S. Lee and N. D. Yun, Vector variational inequalities as a tool for studing vector optimization problems, Nonlinear Anal., 34 (1998), 745-765.doi: 10.1016/S0362-546X(97)00578-6.

    [26]

    S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.doi: 10.1007/s10957-010-9736-8.

    [27]

    X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems, J. Glob. Optim., 51 (2011), 541-548.doi: 10.1007/s10898-010-9641-6.

    [28]

    S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of the solution mappings to parametric generalized strong vector equilibrium problems, J. Glob. Optim., 55 (2013), 597-610.doi: 10.1007/s10898-012-9985-1.

    [29]

    D. T. Luc, Connectedness of the efficient point sets in quasiconcave vector maximization, J. Math. Anal. Appl., 122 (1987), 346-354.doi: 10.1016/0022-247X(87)90264-2.

    [30]

    Q. S. Qiu and X. M. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions, J. Glob. Optim., 47 (2010), 1-12.doi: 10.1007/s10898-009-9452-9.

    [31]

    Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 439-449.doi: 10.1007/s10957-011-9906-3.

    [32]

    Q. S. Qiu and X. M. Yang, Scalarization of approximate solution for vector equilibrium problems, J. Ind. Manag. Optim., 9 (2013), 143-151.doi: 10.3934/jimo.2013.9.143.

    [33]

    E. J. Sun, On the connectedness of the efficient set for strictly quasiconvex vector minimization problems, J. Optim. Theory Appl., 89 (1996), 475-481.doi: 10.1007/BF02192541.

    [34]

    Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.doi: 10.3934/jimo.2014.10.1225.

    [35]

    R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connectedness of solution sets to symmetric vector equilibrium problems, Taiwan. J. Math., 13 (2009), 821-836.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(155) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return