• Previous Article
    Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money
  • JIMO Home
  • This Issue
  • Next Article
    Explicit solution for the stationary distribution of a discrete-time finite buffer queue
July  2016, 12(3): 1135-1151. doi: 10.3934/jimo.2016.12.1135

Some characterizations of the approximate solutions to generalized vector equilibrium problems

1. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Received  November 2014 Revised  May 2015 Published  September 2015

In this paper, a scalarization result and a density theorem concerned with the sets of weakly efficient and efficient approximate solutions to a generalized vector equilibrium problem are given, respectively. By using the scalarization result and the density theorem, the connectedness of the sets of weakly efficient and efficient approximate solutions to the generalized vector equilibrium problem are established without the assumptions of monotonicity and compactness. The lower semicontinuity of weakly efficient and efficient approximate solution mappings to the parametric generalized vector equilibrium problem with perturbing both the objective mapping and the feasible region are obtained without the assumptions of monotonicity and compactness. Furthermore, the upper semicontinuity of weakly efficient approximate solution mapping and the Hausdorff upper semicontinuity of efficient approximate solution mapping to the parametric generalized vector equilibrium problem with perturbing both the objective mapping and the feasible region are also given under some suitable conditions.
Citation: Yu Han, Nan-Jing Huang. Some characterizations of the approximate solutions to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1135-1151. doi: 10.3934/jimo.2016.12.1135
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim., 29 (2008), 24.  doi: 10.1080/01630560701873068.  Google Scholar

[4]

L. Q. Anh and P. Q. Khanh, Continuity of solution maps of parametric quasiequilibrium problems,, J. Glob. Optim., 46 (2010), 247.  doi: 10.1007/s10898-009-9422-2.  Google Scholar

[5]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984).   Google Scholar

[6]

R. Brown, Topology,, Ellis Horwood, (1988).   Google Scholar

[7]

B. Chen, Q. Y. Liu, Z. B. Liu and N. J. Huang, Connectedness of approximate solutions set for vector equilibrium problems in Hausdorff topological vector spaces,, Fixed Point Theory and Applications, 2011 (2011).  doi: 10.1186/1687-1812-2011-36.  Google Scholar

[8]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems,, J. Glob. Optim., 56 (2013), 1515.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[9]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[10]

Y. H. Cheng, On the connectedness of the solution set for the weak vector variational inequality,, J. Math. Anal. Appl., 260 (2001), 1.  doi: 10.1006/jmaa.2000.7389.  Google Scholar

[11]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[12]

Y. Gao, X. M. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems,, J. Ind. Manag. Optim., 7 (2011), 483.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[13]

Y. Gao, X. M. Yang, J. Yang and H. Yan, Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps,, J. Ind. Manag. Optim., 11 (2015), 673.  doi: 10.3934/jimo.2015.11.673.  Google Scholar

[14]

X. H. Gong, Connectedness of efficiency solution sets for set-valued maps in normed spaces,, J. Optim. Theory Appl., 83 (1994), 83.  doi: 10.1007/BF02191763.  Google Scholar

[15]

X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.  doi: 10.1023/A:1026418122905.  Google Scholar

[16]

X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems,, J. Optim. Theory Appl., 133 (2007), 151.  doi: 10.1007/s10957-007-9196-y.  Google Scholar

[17]

X.H. Gong and J.C. Yao, Connectedness of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.  doi: 10.1007/s10957-008-9378-2.  Google Scholar

[18]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[19]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[20]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces,, Springer, (2003).   Google Scholar

[21]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems,, Appl. Math. Lett., 28 (2014), 38.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[22]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[23]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[24]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[25]

G. M. Lee, D. S. Kim, B. S. Lee and N. D. Yun, Vector variational inequalities as a tool for studing vector optimization problems,, Nonlinear Anal., 34 (1998), 745.  doi: 10.1016/S0362-546X(97)00578-6.  Google Scholar

[26]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[27]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541.  doi: 10.1007/s10898-010-9641-6.  Google Scholar

[28]

S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of the solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.  doi: 10.1007/s10898-012-9985-1.  Google Scholar

[29]

D. T. Luc, Connectedness of the efficient point sets in quasiconcave vector maximization,, J. Math. Anal. Appl., 122 (1987), 346.  doi: 10.1016/0022-247X(87)90264-2.  Google Scholar

[30]

Q. S. Qiu and X. M. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions,, J. Glob. Optim., 47 (2010), 1.  doi: 10.1007/s10898-009-9452-9.  Google Scholar

[31]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems,, J. Optim. Theory Appl., 152 (2012), 439.  doi: 10.1007/s10957-011-9906-3.  Google Scholar

[32]

Q. S. Qiu and X. M. Yang, Scalarization of approximate solution for vector equilibrium problems,, J. Ind. Manag. Optim., 9 (2013), 143.  doi: 10.3934/jimo.2013.9.143.  Google Scholar

[33]

E. J. Sun, On the connectedness of the efficient set for strictly quasiconvex vector minimization problems,, J. Optim. Theory Appl., 89 (1996), 475.  doi: 10.1007/BF02192541.  Google Scholar

[34]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem,, J. Ind. Manag. Optim., 10 (2014), 1225.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

[35]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connectedness of solution sets to symmetric vector equilibrium problems,, Taiwan. J. Math., 13 (2009), 821.   Google Scholar

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems,, Numer. Funct. Anal. Optim., 29 (2008), 24.  doi: 10.1080/01630560701873068.  Google Scholar

[4]

L. Q. Anh and P. Q. Khanh, Continuity of solution maps of parametric quasiequilibrium problems,, J. Glob. Optim., 46 (2010), 247.  doi: 10.1007/s10898-009-9422-2.  Google Scholar

[5]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley and Sons, (1984).   Google Scholar

[6]

R. Brown, Topology,, Ellis Horwood, (1988).   Google Scholar

[7]

B. Chen, Q. Y. Liu, Z. B. Liu and N. J. Huang, Connectedness of approximate solutions set for vector equilibrium problems in Hausdorff topological vector spaces,, Fixed Point Theory and Applications, 2011 (2011).  doi: 10.1186/1687-1812-2011-36.  Google Scholar

[8]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems,, J. Glob. Optim., 56 (2013), 1515.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[9]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[10]

Y. H. Cheng, On the connectedness of the solution set for the weak vector variational inequality,, J. Math. Anal. Appl., 260 (2001), 1.  doi: 10.1006/jmaa.2000.7389.  Google Scholar

[11]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[12]

Y. Gao, X. M. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems,, J. Ind. Manag. Optim., 7 (2011), 483.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[13]

Y. Gao, X. M. Yang, J. Yang and H. Yan, Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps,, J. Ind. Manag. Optim., 11 (2015), 673.  doi: 10.3934/jimo.2015.11.673.  Google Scholar

[14]

X. H. Gong, Connectedness of efficiency solution sets for set-valued maps in normed spaces,, J. Optim. Theory Appl., 83 (1994), 83.  doi: 10.1007/BF02191763.  Google Scholar

[15]

X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.  doi: 10.1023/A:1026418122905.  Google Scholar

[16]

X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems,, J. Optim. Theory Appl., 133 (2007), 151.  doi: 10.1007/s10957-007-9196-y.  Google Scholar

[17]

X.H. Gong and J.C. Yao, Connectedness of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.  doi: 10.1007/s10957-008-9378-2.  Google Scholar

[18]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[19]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[20]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces,, Springer, (2003).   Google Scholar

[21]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems,, Appl. Math. Lett., 28 (2014), 38.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[22]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[23]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and the approxiamte solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[24]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[25]

G. M. Lee, D. S. Kim, B. S. Lee and N. D. Yun, Vector variational inequalities as a tool for studing vector optimization problems,, Nonlinear Anal., 34 (1998), 745.  doi: 10.1016/S0362-546X(97)00578-6.  Google Scholar

[26]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[27]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems,, J. Glob. Optim., 51 (2011), 541.  doi: 10.1007/s10898-010-9641-6.  Google Scholar

[28]

S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of the solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.  doi: 10.1007/s10898-012-9985-1.  Google Scholar

[29]

D. T. Luc, Connectedness of the efficient point sets in quasiconcave vector maximization,, J. Math. Anal. Appl., 122 (1987), 346.  doi: 10.1016/0022-247X(87)90264-2.  Google Scholar

[30]

Q. S. Qiu and X. M. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions,, J. Glob. Optim., 47 (2010), 1.  doi: 10.1007/s10898-009-9452-9.  Google Scholar

[31]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems,, J. Optim. Theory Appl., 152 (2012), 439.  doi: 10.1007/s10957-011-9906-3.  Google Scholar

[32]

Q. S. Qiu and X. M. Yang, Scalarization of approximate solution for vector equilibrium problems,, J. Ind. Manag. Optim., 9 (2013), 143.  doi: 10.3934/jimo.2013.9.143.  Google Scholar

[33]

E. J. Sun, On the connectedness of the efficient set for strictly quasiconvex vector minimization problems,, J. Optim. Theory Appl., 89 (1996), 475.  doi: 10.1007/BF02192541.  Google Scholar

[34]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem,, J. Ind. Manag. Optim., 10 (2014), 1225.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

[35]

R. Y. Zhong, N. J. Huang and M. M. Wong, Connectedness and path-connectedness of solution sets to symmetric vector equilibrium problems,, Taiwan. J. Math., 13 (2009), 821.   Google Scholar

[1]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[4]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[5]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[8]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[9]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[10]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[13]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]