July  2016, 12(3): 1153-1172. doi: 10.3934/jimo.2016.12.1153

Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money

1. 

Research and Development Centre, Bharathiar University, Coimbatore-641 046, Tamilnadu, India

2. 

RVS Technical Campus-Coimbatore, Coimbatore-641402, Tamilnadu, India

3. 

CSIR Emeritus Scientist in Mathematics, Government Arts College, Coimbatore, Tamilnadu, India

Received  October 2014 Revised  May 2015 Published  September 2015

This paper presents production-inventory model for deteriorating items with constant demand under the effect of inflation and time-value of money. Models are developed without shortages while using two production cost functions. In the first case, production cost is divided into two parts: an initial cost which occurs at the beginning of each cycle and is applied to the entire quantity produced during the cycle and a running cost that is incurred as production progresses and is applied to the initial units produced. In the second case, the production cost is incurred at the beginning of the cycle. Numerical examples are given to illustrate the theoretical results and made the sensitivity analysis of parameters on the optimal solutions. The validation of this model's result was coded in Microsoft Visual Basic 6.0
Citation: Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153
References:
[1]

J. A. Buzacott, Economic order quantities with inflation,, Operational Research, 26 (1979), 553.   Google Scholar

[2]

C.-Y. Dye, H.-J. Chang and C.-H. Wu, Purchase-inventory decision models for deteriorating items with a temporary sale price,, Internat. J. Inform. Management Sci., 18 (2007), 17.   Google Scholar

[3]

S. Eilon and R. V. Mallaya, Issuing and pricing policy of semi-perishables,, in Proceedings of the 4th International Conference on Operational Research, (1966).   Google Scholar

[4]

P. M. Ghare and G. F. Schrader, A model for exponentially decaying inventory,, J. Indust. Eng., 14 (1963), 238.   Google Scholar

[5]

J. Min, et al., An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments,, Internat. J. Systems Sci., 43 (2012), 1039.  doi: 10.1080/00207721.2012.659685.  Google Scholar

[6]

I. Moon and S. Lee, The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle,, European J. Oper. Res., 125 (2000), 588.  doi: 10.1016/S0377-2217(99)00270-2.  Google Scholar

[7]

G. Moslehi, M. Rasti Barzoki and M. Fathollah Bayati, The effect of inflation and time value of money on lot sizing by considering of rework in an inventory control model,, Internat. J. Indust. Eng. Prod. Man., 22 (2011), 181.   Google Scholar

[8]

A. Roy and G. P. Samanta, Inventory model with two rates of production for deteriorating items with permissible delay in payments,, Internat. J. Systems Sci., 42 (2011), 1375.  doi: 10.1080/00207721003646256.  Google Scholar

[9]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Appl. Math. Comput., 217 (2011), 6159.  doi: 10.1016/j.amc.2010.12.098.  Google Scholar

[10]

N. H. Shah, Inventory model for deteriorating items and time value of money for a finite time horizon under the permissible delay in payments,, Internat. J. Systems Sci., 37 (2006), 9.  doi: 10.1080/00207720500404334.  Google Scholar

[11]

S. R. Singh and R. Jain, On reserve money for an EOQ model in an inflationary environment under supplier credit,, OPSEARCH, 46 (2009), 303.  doi: 10.1007/s12597-009-0020-3.  Google Scholar

[12]

S. Singh, R. Dube and S. R. Singh, Production model with selling price dependent demand and partially backlogging under inflation,, Internat. J. Math. Mod. Comput., 1 (2011), 1.   Google Scholar

[13]

H.-M. Wee, Economic production lot size model for deteriorating items with partial back ordering,, Comp. Indust. Eng., 24 (1993), 449.  doi: 10.1016/0360-8352(93)90040-5.  Google Scholar

[14]

H.-M. Wee and S.-T. Law, Economic production lot size for deteriorating items taking account of the time value of money,, Comp. Oper. Res., 26 (1999), 545.  doi: 10.1016/S0305-0548(98)00078-1.  Google Scholar

[15]

J. C. P. Yu, et al., The effects of inflation and time value of money on a production model with a random product life cycle,, Asia-Pac. J. Oper. Res., 27 (2010), 437.  doi: 10.1142/S0217595910002788.  Google Scholar

show all references

References:
[1]

J. A. Buzacott, Economic order quantities with inflation,, Operational Research, 26 (1979), 553.   Google Scholar

[2]

C.-Y. Dye, H.-J. Chang and C.-H. Wu, Purchase-inventory decision models for deteriorating items with a temporary sale price,, Internat. J. Inform. Management Sci., 18 (2007), 17.   Google Scholar

[3]

S. Eilon and R. V. Mallaya, Issuing and pricing policy of semi-perishables,, in Proceedings of the 4th International Conference on Operational Research, (1966).   Google Scholar

[4]

P. M. Ghare and G. F. Schrader, A model for exponentially decaying inventory,, J. Indust. Eng., 14 (1963), 238.   Google Scholar

[5]

J. Min, et al., An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments,, Internat. J. Systems Sci., 43 (2012), 1039.  doi: 10.1080/00207721.2012.659685.  Google Scholar

[6]

I. Moon and S. Lee, The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle,, European J. Oper. Res., 125 (2000), 588.  doi: 10.1016/S0377-2217(99)00270-2.  Google Scholar

[7]

G. Moslehi, M. Rasti Barzoki and M. Fathollah Bayati, The effect of inflation and time value of money on lot sizing by considering of rework in an inventory control model,, Internat. J. Indust. Eng. Prod. Man., 22 (2011), 181.   Google Scholar

[8]

A. Roy and G. P. Samanta, Inventory model with two rates of production for deteriorating items with permissible delay in payments,, Internat. J. Systems Sci., 42 (2011), 1375.  doi: 10.1080/00207721003646256.  Google Scholar

[9]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Appl. Math. Comput., 217 (2011), 6159.  doi: 10.1016/j.amc.2010.12.098.  Google Scholar

[10]

N. H. Shah, Inventory model for deteriorating items and time value of money for a finite time horizon under the permissible delay in payments,, Internat. J. Systems Sci., 37 (2006), 9.  doi: 10.1080/00207720500404334.  Google Scholar

[11]

S. R. Singh and R. Jain, On reserve money for an EOQ model in an inflationary environment under supplier credit,, OPSEARCH, 46 (2009), 303.  doi: 10.1007/s12597-009-0020-3.  Google Scholar

[12]

S. Singh, R. Dube and S. R. Singh, Production model with selling price dependent demand and partially backlogging under inflation,, Internat. J. Math. Mod. Comput., 1 (2011), 1.   Google Scholar

[13]

H.-M. Wee, Economic production lot size model for deteriorating items with partial back ordering,, Comp. Indust. Eng., 24 (1993), 449.  doi: 10.1016/0360-8352(93)90040-5.  Google Scholar

[14]

H.-M. Wee and S.-T. Law, Economic production lot size for deteriorating items taking account of the time value of money,, Comp. Oper. Res., 26 (1999), 545.  doi: 10.1016/S0305-0548(98)00078-1.  Google Scholar

[15]

J. C. P. Yu, et al., The effects of inflation and time value of money on a production model with a random product life cycle,, Asia-Pac. J. Oper. Res., 27 (2010), 437.  doi: 10.1142/S0217595910002788.  Google Scholar

[1]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[2]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[3]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[6]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[9]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (0)

[Back to Top]