October  2016, 12(4): 1173-1186. doi: 10.3934/jimo.2016.12.1173

Nonsingular $H$-tensor and its criteria

1. 

School of Management Science, Qufu Normal University, Rizhao Shandong, 276800, China

2. 

Department of Mathematics and Statistics, Curtin University of Technology, West Australia, WA 6102

3. 

Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, 6102, Australia

Received  February 2015 Revised  March 2015 Published  January 2016

$H$-tensor is a new developed concept in tensor analysis and it is an extension of $H$-matrix and $M$-tensor. Based on the spectral theory of nonnegative tensors, several equivalent conditions of nonsingular $H$-tensors are established in the literature. However, these conditions can not be used as a criteria to identify nonsingular $H$-tensors as they are hard to verify. In this paper, based on the diagonal product dominance and $S$ diagonal product dominance of a tensor, we establish some new implementable criteria in identifying nonsingular $H$-tensors. The positive definiteness of nonsingular $H$-tensors with positive diagonal entries is also discussed in this paper. The obtained results extend the corresponding conclusions for nonsingular $H$-matrices and improve the existing results for nonsingular $H$-tensors.
Citation: Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173
References:
[1]

J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl., 433 (2010), 1851-1872. doi: 10.1016/j.laa.2010.06.046.

[2]

K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Science, 6 (2008), 507-520. doi: 10.4310/CMS.2008.v6.n2.a12.

[3]

H. B. Chen and L. Q. Qi, Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors, J. Industrial and Management Optim., 11 (2015), 1263-1274. doi: 10.3934/jimo.2015.11.1263.

[4]

A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations, John Wiley & Sons, Ltd, 2009. doi: 10.1002/9780470747278.

[5]

L. Cvetkovic, V. Kostic and R. S. Varga, A new Geršgorin-type eigenvalue inclusion set, Elec. Trans. Numer. Anal., 18 (2004), 73-80.

[6]

L. Cvetkovic and V. Kostic, New criteria for identifying $H$-matrices, J Comput. Appl. Math., 180 (2005), 265-278. doi: 10.1016/j.cam.2004.10.017.

[7]

L. De Lathauwer, B. De Moor and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), 1253-1278. doi: 10.1137/S0895479896305696.

[8]

W. Y. Ding, L. Q. Qi and Y. M. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278. doi: 10.1016/j.laa.2013.08.038.

[9]

S. Gandy, B. Recht and I. Yamada, Tensor completion and low-$n$-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19pp. doi: 10.1088/0266-5611/27/2/025010.

[10]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.

[11]

S. L. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Combination Optim., 24 (2012), 564-579. doi: 10.1007/s10878-011-9407-1.

[12]

S. L. Hu, Z. H. Huang, C. Ling and L. Q. Qi, On determinants and eigenvalue theory of tensors, J. Symbolic Comput., 50 (2013), 508-531. doi: 10.1016/j.jsc.2012.10.001.

[13]

S. L. Hu and L. Q. Qi, Algebraic connectivity of an even uniform hypergraph, J. Combinatorial Optim., 24 (2012), 564-579. doi: 10.1007/s10878-011-9407-1.

[14]

M. R. Kannan, N. Shaked-Monderer and A. Berman, Some properties of strong H-tensors and general H-tensors, Linear Algebra Appl., 476 (2015), 42-55. doi: 10.1016/j.laa.2015.02.034.

[15]

E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884. doi: 10.1137/S0895479801387413.

[16]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500. doi: 10.1137/07070111X.

[17]

T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenvalues, SIAM J. Matrix Anal. Appl, 32 (2011), 1095-1124. doi: 10.1137/100801482.

[18]

C. Q. Li, F. Wang, J. X. Zhao, Y. Zhu and Y. T. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14. doi: 10.1016/j.cam.2013.04.022.

[19]

Y. Y. Liu and F. H. Shang, An efficient matrix factorization method for tensor completion, IEEE Signal Processing Letters, 20 (2013), 307-310. doi: 10.1109/LSP.2013.2245416.

[20]

L. H. Lim, Singular value and and eigenvalue of tensors, a variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in multiSensor Adaptive Processing, 2005, 129-132.

[21]

J. Liu, P. Musialski, P. Wonka and J. P. Ye, Tensor completion for estimating missing values in visual data, IEEE Trans. on Pattern Anal. Machine Intelligence, 35 (2013), 208-220.

[22]

M. Moakher, On the averaging of symmetric positive-definite tensors, J. Elasticity, 82 (2006), 273-296. doi: 10.1007/s10659-005-9035-z.

[23]

M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099. doi: 10.1137/09074838X.

[24]

Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. on Auto. Control, 53 (2008), 1096-1107. doi: 10.1109/TAC.2008.923679.

[25]

C. L. Nikias and J. M. Mendel, Signal processing with higher-order spectra, IEEE Signal Processing Magazine, 10 (1993), 10-37. doi: 10.1109/79.221324.

[26]

L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic Comput., 54 (2013), 9-35. doi: 10.1016/j.jsc.2012.11.005.

[27]

A. M. Ostrowski, Über die Determinaanten mit überwiegender Hauptdiagonale, Comment Math. Helv., 10 (1937), 69-96. doi: 10.1007/BF01214284.

[28]

L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[29]

L. Qi, J. Y. Shao and Q. Wang, Regular uniform hypergraphs, $s$-cycles, $s$-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl., 443 (2014), 215-227. doi: 10.1016/j.laa.2013.11.008.

[30]

L. Qi, C. Xu and Y. Xu, Nonnegative tensor factorization, completely positive tensors and an Hierarchically elimination algorithm, SIAM J. Matrix Anal. Appl., 35 (2014), 1227-1241. doi: 10.1137/13092232X.

[31]

Y. S. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear and Multilinear Algebra, 63 (2015), 120-131. doi: 10.1080/03081087.2013.851198.

[32]

Y. Song and L. Q. Qi, Infinite and finite dimensional Hilbert tensors, Linear Algebra Appl., 451 (2014), 1-14. doi: 10.1016/j.laa.2014.03.023.

[33]

Y. S. Song and L. Q. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873. doi: 10.1007/s10957-014-0616-5.

[34]

Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530. doi: 10.1137/090778766.

[35]

P. Yuan and L. You, Some remarks on $P,P_0, B$ and $B_0$ tensors, Linear Algebra Appl., 459 (2014), 511-521. doi: 10.1016/j.laa.2014.07.043.

[36]

L. P. Zhang, L. Q. Qi and G. L. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452. doi: 10.1137/130915339.

[37]

X. Z. Zhang, C. Ling and L. Qi, The best rank-1 approximation of a symmetric tensor and related spherical optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), 806-821. doi: 10.1137/110835335.

show all references

References:
[1]

J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl., 433 (2010), 1851-1872. doi: 10.1016/j.laa.2010.06.046.

[2]

K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Science, 6 (2008), 507-520. doi: 10.4310/CMS.2008.v6.n2.a12.

[3]

H. B. Chen and L. Q. Qi, Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors, J. Industrial and Management Optim., 11 (2015), 1263-1274. doi: 10.3934/jimo.2015.11.1263.

[4]

A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations, John Wiley & Sons, Ltd, 2009. doi: 10.1002/9780470747278.

[5]

L. Cvetkovic, V. Kostic and R. S. Varga, A new Geršgorin-type eigenvalue inclusion set, Elec. Trans. Numer. Anal., 18 (2004), 73-80.

[6]

L. Cvetkovic and V. Kostic, New criteria for identifying $H$-matrices, J Comput. Appl. Math., 180 (2005), 265-278. doi: 10.1016/j.cam.2004.10.017.

[7]

L. De Lathauwer, B. De Moor and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), 1253-1278. doi: 10.1137/S0895479896305696.

[8]

W. Y. Ding, L. Q. Qi and Y. M. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278. doi: 10.1016/j.laa.2013.08.038.

[9]

S. Gandy, B. Recht and I. Yamada, Tensor completion and low-$n$-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19pp. doi: 10.1088/0266-5611/27/2/025010.

[10]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.

[11]

S. L. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Combination Optim., 24 (2012), 564-579. doi: 10.1007/s10878-011-9407-1.

[12]

S. L. Hu, Z. H. Huang, C. Ling and L. Q. Qi, On determinants and eigenvalue theory of tensors, J. Symbolic Comput., 50 (2013), 508-531. doi: 10.1016/j.jsc.2012.10.001.

[13]

S. L. Hu and L. Q. Qi, Algebraic connectivity of an even uniform hypergraph, J. Combinatorial Optim., 24 (2012), 564-579. doi: 10.1007/s10878-011-9407-1.

[14]

M. R. Kannan, N. Shaked-Monderer and A. Berman, Some properties of strong H-tensors and general H-tensors, Linear Algebra Appl., 476 (2015), 42-55. doi: 10.1016/j.laa.2015.02.034.

[15]

E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884. doi: 10.1137/S0895479801387413.

[16]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500. doi: 10.1137/07070111X.

[17]

T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenvalues, SIAM J. Matrix Anal. Appl, 32 (2011), 1095-1124. doi: 10.1137/100801482.

[18]

C. Q. Li, F. Wang, J. X. Zhao, Y. Zhu and Y. T. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14. doi: 10.1016/j.cam.2013.04.022.

[19]

Y. Y. Liu and F. H. Shang, An efficient matrix factorization method for tensor completion, IEEE Signal Processing Letters, 20 (2013), 307-310. doi: 10.1109/LSP.2013.2245416.

[20]

L. H. Lim, Singular value and and eigenvalue of tensors, a variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in multiSensor Adaptive Processing, 2005, 129-132.

[21]

J. Liu, P. Musialski, P. Wonka and J. P. Ye, Tensor completion for estimating missing values in visual data, IEEE Trans. on Pattern Anal. Machine Intelligence, 35 (2013), 208-220.

[22]

M. Moakher, On the averaging of symmetric positive-definite tensors, J. Elasticity, 82 (2006), 273-296. doi: 10.1007/s10659-005-9035-z.

[23]

M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099. doi: 10.1137/09074838X.

[24]

Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. on Auto. Control, 53 (2008), 1096-1107. doi: 10.1109/TAC.2008.923679.

[25]

C. L. Nikias and J. M. Mendel, Signal processing with higher-order spectra, IEEE Signal Processing Magazine, 10 (1993), 10-37. doi: 10.1109/79.221324.

[26]

L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic Comput., 54 (2013), 9-35. doi: 10.1016/j.jsc.2012.11.005.

[27]

A. M. Ostrowski, Über die Determinaanten mit überwiegender Hauptdiagonale, Comment Math. Helv., 10 (1937), 69-96. doi: 10.1007/BF01214284.

[28]

L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[29]

L. Qi, J. Y. Shao and Q. Wang, Regular uniform hypergraphs, $s$-cycles, $s$-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl., 443 (2014), 215-227. doi: 10.1016/j.laa.2013.11.008.

[30]

L. Qi, C. Xu and Y. Xu, Nonnegative tensor factorization, completely positive tensors and an Hierarchically elimination algorithm, SIAM J. Matrix Anal. Appl., 35 (2014), 1227-1241. doi: 10.1137/13092232X.

[31]

Y. S. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear and Multilinear Algebra, 63 (2015), 120-131. doi: 10.1080/03081087.2013.851198.

[32]

Y. Song and L. Q. Qi, Infinite and finite dimensional Hilbert tensors, Linear Algebra Appl., 451 (2014), 1-14. doi: 10.1016/j.laa.2014.03.023.

[33]

Y. S. Song and L. Q. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873. doi: 10.1007/s10957-014-0616-5.

[34]

Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530. doi: 10.1137/090778766.

[35]

P. Yuan and L. You, Some remarks on $P,P_0, B$ and $B_0$ tensors, Linear Algebra Appl., 459 (2014), 511-521. doi: 10.1016/j.laa.2014.07.043.

[36]

L. P. Zhang, L. Q. Qi and G. L. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452. doi: 10.1137/130915339.

[37]

X. Z. Zhang, C. Ling and L. Qi, The best rank-1 approximation of a symmetric tensor and related spherical optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), 806-821. doi: 10.1137/110835335.

[1]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

[2]

Jinghong Liu, Yinsuo Jia. Gradient superconvergence post-processing of the tensor-product quadratic pentahedral finite element. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 495-504. doi: 10.3934/dcdsb.2015.20.495

[3]

Jin Wang, Jun-E Feng, Hua-Lin Huang. Solvability of the matrix equation $ AX^{2} = B $ with semi-tensor product. Electronic Research Archive, 2021, 29 (3) : 2249-2267. doi: 10.3934/era.2020114

[4]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems and Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[5]

Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2022, 18 (6) : 4043-4047. doi: 10.3934/jimo.2021146

[6]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[7]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial and Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[8]

Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022073

[9]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[10]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[11]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems and Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[12]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049

[13]

Xia Li, Yong Wang, Zheng-Hai Huang. Continuity, differentiability and semismoothness of generalized tensor functions. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3525-3550. doi: 10.3934/jimo.2020131

[14]

Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1101-1113. doi: 10.3934/jimo.2021010

[15]

Patrick Bonckaert, Timoteo Carletti, Ernest Fontich. On dynamical systems close to a product of $m$ rotations. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 349-366. doi: 10.3934/dcds.2009.24.349

[16]

Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial and Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271

[17]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems and Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[18]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

[19]

Michael K. Ng, Chi-Pan Tam, Fan Wang. Multi-view foreground segmentation via fourth order tensor learning. Inverse Problems and Imaging, 2013, 7 (3) : 885-906. doi: 10.3934/ipi.2013.7.885

[20]

Qun Liu, Lihua Fu, Meng Zhang, Wanjuan Zhang. Two-dimensional seismic data reconstruction using patch tensor completion. Inverse Problems and Imaging, 2020, 14 (6) : 985-1000. doi: 10.3934/ipi.2020052

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (262)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]