-
Previous Article
Circulant tensors with applications to spectral hypergraph theory and stochastic process
- JIMO Home
- This Issue
-
Next Article
Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging
Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem
1. | Business Administration Department, Gulf University for Science and Technology, Kuwait |
2. | Department of Engineering Management and Systems Engineering, Old Dominion University, Norfolk, VA, United States |
3. | Department of Civil Engineering, Lebanese American University, Byblos, Lebanon |
References:
[1] |
I. K. Altinel, K. C. Ozkisacik and N. Aras, Variable neighborhood search heuristics for the probabilistic multi-source weber problem,, Journal of the Operational Research Society, 62 (2011), 1813. Google Scholar |
[2] |
N. Aras, M. Orbay and I. K. Altinel, Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem,, Journal of the Operational Research Society, 59 (2008), 64.
doi: 10.1057/palgrave.jors.2602262. |
[3] |
J-P. Arnaout, Ant Colony Optimization algorithm for the Euclidean location-allocation problem with unknown number of facilities,, Journal of Intelligent Manufacturing, 24 (2013), 45.
doi: 10.1007/s10845-011-0536-2. |
[4] |
M. Bischoff , T. Fleischmann and K. Klamroth, The multi-facility location-allocation problem with polyhedral barriers,, Computers and Operations Research, 36 (2009), 1376.
doi: 10.1016/j.cor.2008.02.014. |
[5] |
M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms,, European Journal of Operational Research, 177 (2007), 22.
doi: 10.1016/j.ejor.2005.10.061. |
[6] |
J. Brimberg, P. Hansen, N. Mladenovi and E. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem,, Operations Research, 48 (2000), 444.
doi: 10.1287/opre.48.3.444.12431. |
[7] |
M. D. H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated location-allocation problem,, Journal of the Operational Research Society, 52 (2001), 821.
doi: 10.1057/palgrave.jors.2601176. |
[8] |
M. Jabalameli and A. Ghaderi, Hybrid algorithms for the uncapacitated continuous location-allocation problem,, International Journal of Advanced Manufacturing Technology, 37 (2008), 202.
doi: 10.1007/s00170-007-0944-9. |
[9] |
S. Krau, Extensions du Problème de Weber,, Ph.D thesis, (1996).
|
[10] |
R. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem,, Mathematical Programming, 3 (1972), 193.
|
[11] |
W. Liu and J. Xu, A study on facility location-allocation problem in mixed environment of randomness and fuzziness,, Journal of Intelligent Manufacturing, 22 (2011), 389.
doi: 10.1007/s10845-009-0297-3. |
[12] |
R. Logendran and M. P. Terrell, Uncapacitated plant location-allocation problems with price sensitive stochasticdemands,, Computers and Operations Research, 15 (1988), 189. Google Scholar |
[13] |
E. Mehdizadeh, M. Tavarroth and S. Nousavi, Solving the Stochastic Capacitated Location-Allocation Problem by Using a New Hybrid Algorithm,, Proceedings of the 15th WSEAS International Conference on Applied Mathematics, (2010), 27. Google Scholar |
[14] |
M. Ohlemuller, Tabu search for large location-allocation problems,, Journal of the Operational Research Society, 48 (1997), 745. Google Scholar |
[15] |
S. H. Owen and M. S. Daskin, Strategic facility location: A review,, European Journal of Operational Research, 111 (1998), 423.
doi: 10.1016/S0377-2217(98)00186-6. |
[16] |
K. C. Ozkisacik, I. K. Altinel and N. Aras, Solving probabilistic multi-facility Weber problem by vector quantization,, OR Spectrum, 31 (2009), 533.
doi: 10.1007/s00291-008-0157-0. |
[17] |
S. Pasandideh and S. Niaki, Genetic application in a facility location problem with random demand within queuing framework,, Journal of Intelligent Manufacturing, (2010). Google Scholar |
[18] |
S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous location-allocation problem,, Annals of Operations Research, 123 (2003), 203.
doi: 10.1023/A:1026131531250. |
[19] |
E. Weiszfeld, Sur le point par lequel la somme des distances de n Points donnés est Minimum,, Tohoku Mathematical Journal, 43 (1937), 355. Google Scholar |
[20] |
J. Zhou and B. Liu, New stochastic models for capacitated location-allocation problem,, Computers and Industrial Engineering, 45 (2003), 111.
doi: 10.1016/S0360-8352(03)00021-4. |
[21] |
J. Zhou, Uncapacitated facility layout problem with stochastic demands,, in Proceedings of the Sixth National Conferenceof Operations Research Society of China, (2000), 904. Google Scholar |
show all references
References:
[1] |
I. K. Altinel, K. C. Ozkisacik and N. Aras, Variable neighborhood search heuristics for the probabilistic multi-source weber problem,, Journal of the Operational Research Society, 62 (2011), 1813. Google Scholar |
[2] |
N. Aras, M. Orbay and I. K. Altinel, Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem,, Journal of the Operational Research Society, 59 (2008), 64.
doi: 10.1057/palgrave.jors.2602262. |
[3] |
J-P. Arnaout, Ant Colony Optimization algorithm for the Euclidean location-allocation problem with unknown number of facilities,, Journal of Intelligent Manufacturing, 24 (2013), 45.
doi: 10.1007/s10845-011-0536-2. |
[4] |
M. Bischoff , T. Fleischmann and K. Klamroth, The multi-facility location-allocation problem with polyhedral barriers,, Computers and Operations Research, 36 (2009), 1376.
doi: 10.1016/j.cor.2008.02.014. |
[5] |
M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms,, European Journal of Operational Research, 177 (2007), 22.
doi: 10.1016/j.ejor.2005.10.061. |
[6] |
J. Brimberg, P. Hansen, N. Mladenovi and E. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem,, Operations Research, 48 (2000), 444.
doi: 10.1287/opre.48.3.444.12431. |
[7] |
M. D. H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated location-allocation problem,, Journal of the Operational Research Society, 52 (2001), 821.
doi: 10.1057/palgrave.jors.2601176. |
[8] |
M. Jabalameli and A. Ghaderi, Hybrid algorithms for the uncapacitated continuous location-allocation problem,, International Journal of Advanced Manufacturing Technology, 37 (2008), 202.
doi: 10.1007/s00170-007-0944-9. |
[9] |
S. Krau, Extensions du Problème de Weber,, Ph.D thesis, (1996).
|
[10] |
R. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem,, Mathematical Programming, 3 (1972), 193.
|
[11] |
W. Liu and J. Xu, A study on facility location-allocation problem in mixed environment of randomness and fuzziness,, Journal of Intelligent Manufacturing, 22 (2011), 389.
doi: 10.1007/s10845-009-0297-3. |
[12] |
R. Logendran and M. P. Terrell, Uncapacitated plant location-allocation problems with price sensitive stochasticdemands,, Computers and Operations Research, 15 (1988), 189. Google Scholar |
[13] |
E. Mehdizadeh, M. Tavarroth and S. Nousavi, Solving the Stochastic Capacitated Location-Allocation Problem by Using a New Hybrid Algorithm,, Proceedings of the 15th WSEAS International Conference on Applied Mathematics, (2010), 27. Google Scholar |
[14] |
M. Ohlemuller, Tabu search for large location-allocation problems,, Journal of the Operational Research Society, 48 (1997), 745. Google Scholar |
[15] |
S. H. Owen and M. S. Daskin, Strategic facility location: A review,, European Journal of Operational Research, 111 (1998), 423.
doi: 10.1016/S0377-2217(98)00186-6. |
[16] |
K. C. Ozkisacik, I. K. Altinel and N. Aras, Solving probabilistic multi-facility Weber problem by vector quantization,, OR Spectrum, 31 (2009), 533.
doi: 10.1007/s00291-008-0157-0. |
[17] |
S. Pasandideh and S. Niaki, Genetic application in a facility location problem with random demand within queuing framework,, Journal of Intelligent Manufacturing, (2010). Google Scholar |
[18] |
S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous location-allocation problem,, Annals of Operations Research, 123 (2003), 203.
doi: 10.1023/A:1026131531250. |
[19] |
E. Weiszfeld, Sur le point par lequel la somme des distances de n Points donnés est Minimum,, Tohoku Mathematical Journal, 43 (1937), 355. Google Scholar |
[20] |
J. Zhou and B. Liu, New stochastic models for capacitated location-allocation problem,, Computers and Industrial Engineering, 45 (2003), 111.
doi: 10.1016/S0360-8352(03)00021-4. |
[21] |
J. Zhou, Uncapacitated facility layout problem with stochastic demands,, in Proceedings of the Sixth National Conferenceof Operations Research Society of China, (2000), 904. Google Scholar |
[1] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[2] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[3] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[6] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[7] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[8] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[9] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[10] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[11] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[12] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[13] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[14] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[15] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[16] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[17] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[18] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[19] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[20] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]