Citation: |
[1] |
I. K. Altinel, K. C. Ozkisacik and N. Aras, Variable neighborhood search heuristics for the probabilistic multi-source weber problem, Journal of the Operational Research Society, 62 (2011), 1813-1826. |
[2] |
N. Aras, M. Orbay and I. K. Altinel, Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem, Journal of the Operational Research Society, 59 (2008), 64-79.doi: 10.1057/palgrave.jors.2602262. |
[3] |
J-P. Arnaout, Ant Colony Optimization algorithm for the Euclidean location-allocation problem with unknown number of facilities, Journal of Intelligent Manufacturing, 24 (2013), 45-54.doi: 10.1007/s10845-011-0536-2. |
[4] |
M. Bischoff , T. Fleischmann and K. Klamroth, The multi-facility location-allocation problem with polyhedral barriers, Computers and Operations Research, 36 (2009), 1376-1392.doi: 10.1016/j.cor.2008.02.014. |
[5] |
M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms, European Journal of Operational Research, 177 (2007), 22-41.doi: 10.1016/j.ejor.2005.10.061. |
[6] |
J. Brimberg, P. Hansen, N. Mladenovi and E. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem, Operations Research, 48 (2000), 444-460.doi: 10.1287/opre.48.3.444.12431. |
[7] |
M. D. H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated location-allocation problem, Journal of the Operational Research Society, 52 (2001), 821-829.doi: 10.1057/palgrave.jors.2601176. |
[8] |
M. Jabalameli and A. Ghaderi, Hybrid algorithms for the uncapacitated continuous location-allocation problem, International Journal of Advanced Manufacturing Technology, 37 (2008), 202-209.doi: 10.1007/s00170-007-0944-9. |
[9] |
S. Krau, Extensions du Problème de Weber, Ph.D thesis, Ecole Polytechnique de Montreal, 1996. |
[10] |
R. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem, Mathematical Programming, 3 (1972), 193-209. |
[11] |
W. Liu and J. Xu, A study on facility location-allocation problem in mixed environment of randomness and fuzziness, Journal of Intelligent Manufacturing, 22 (2011), 389-398.doi: 10.1007/s10845-009-0297-3. |
[12] |
R. Logendran and M. P. Terrell, Uncapacitated plant location-allocation problems with price sensitive stochasticdemands, Computers and Operations Research, 15 (1988), 189-198. |
[13] |
E. Mehdizadeh, M. Tavarroth and S. Nousavi, Solving the Stochastic Capacitated Location-Allocation Problem by Using a New Hybrid Algorithm, Proceedings of the 15th WSEAS International Conference on Applied Mathematics, (2010), 27-32. |
[14] |
M. Ohlemuller, Tabu search for large location-allocation problems, Journal of the Operational Research Society, 48 (1997), 745-750. |
[15] |
S. H. Owen and M. S. Daskin, Strategic facility location: A review, European Journal of Operational Research, 111 (1998), 423-447.doi: 10.1016/S0377-2217(98)00186-6. |
[16] |
K. C. Ozkisacik, I. K. Altinel and N. Aras, Solving probabilistic multi-facility Weber problem by vector quantization, OR Spectrum, 31 (2009), 533-554.doi: 10.1007/s00291-008-0157-0. |
[17] |
S. Pasandideh and S. Niaki, Genetic application in a facility location problem with random demand within queuing framework, Journal of Intelligent Manufacturing, (2010). |
[18] |
S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous location-allocation problem, Annals of Operations Research, 123 (2003), 203-222.doi: 10.1023/A:1026131531250. |
[19] |
E. Weiszfeld, Sur le point par lequel la somme des distances de n Points donnés est Minimum, Tohoku Mathematical Journal, 43 (1937), 355-386. |
[20] |
J. Zhou and B. Liu, New stochastic models for capacitated location-allocation problem, Computers and Industrial Engineering, 45 (2003), 111-125.doi: 10.1016/S0360-8352(03)00021-4. |
[21] |
J. Zhou, Uncapacitated facility layout problem with stochastic demands, in Proceedings of the Sixth National Conferenceof Operations Research Society of China, 2000, 904-911. |