
Previous Article
Circulant tensors with applications to spectral hypergraph theory and stochastic process
 JIMO Home
 This Issue

Next Article
Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging
Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated locationallocation problem
1.  Business Administration Department, Gulf University for Science and Technology, Kuwait 
2.  Department of Engineering Management and Systems Engineering, Old Dominion University, Norfolk, VA, United States 
3.  Department of Civil Engineering, Lebanese American University, Byblos, Lebanon 
References:
[1] 
I. K. Altinel, K. C. Ozkisacik and N. Aras, Variable neighborhood search heuristics for the probabilistic multisource weber problem, Journal of the Operational Research Society, 62 (2011), 18131826. 
[2] 
N. Aras, M. Orbay and I. K. Altinel, Efficient heuristics for the rectilinear distance capacitated multifacility Weber problem, Journal of the Operational Research Society, 59 (2008), 6479. doi: 10.1057/palgrave.jors.2602262. 
[3] 
JP. Arnaout, Ant Colony Optimization algorithm for the Euclidean locationallocation problem with unknown number of facilities, Journal of Intelligent Manufacturing, 24 (2013), 4554. doi: 10.1007/s1084501105362. 
[4] 
M. Bischoff , T. Fleischmann and K. Klamroth, The multifacility locationallocation problem with polyhedral barriers, Computers and Operations Research, 36 (2009), 13761392. doi: 10.1016/j.cor.2008.02.014. 
[5] 
M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms, European Journal of Operational Research, 177 (2007), 2241. doi: 10.1016/j.ejor.2005.10.061. 
[6] 
J. Brimberg, P. Hansen, N. Mladenovi and E. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem, Operations Research, 48 (2000), 444460. doi: 10.1287/opre.48.3.444.12431. 
[7] 
M. D. H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated locationallocation problem, Journal of the Operational Research Society, 52 (2001), 821829. doi: 10.1057/palgrave.jors.2601176. 
[8] 
M. Jabalameli and A. Ghaderi, Hybrid algorithms for the uncapacitated continuous locationallocation problem, International Journal of Advanced Manufacturing Technology, 37 (2008), 202209. doi: 10.1007/s0017000709449. 
[9] 
S. Krau, Extensions du Problème de Weber, Ph.D thesis, Ecole Polytechnique de Montreal, 1996. 
[10] 
R. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem, Mathematical Programming, 3 (1972), 193209. 
[11] 
W. Liu and J. Xu, A study on facility locationallocation problem in mixed environment of randomness and fuzziness, Journal of Intelligent Manufacturing, 22 (2011), 389398. doi: 10.1007/s1084500902973. 
[12] 
R. Logendran and M. P. Terrell, Uncapacitated plant locationallocation problems with price sensitive stochasticdemands, Computers and Operations Research, 15 (1988), 189198. 
[13] 
E. Mehdizadeh, M. Tavarroth and S. Nousavi, Solving the Stochastic Capacitated LocationAllocation Problem by Using a New Hybrid Algorithm, Proceedings of the 15th WSEAS International Conference on Applied Mathematics, (2010), 2732. 
[14] 
M. Ohlemuller, Tabu search for large locationallocation problems, Journal of the Operational Research Society, 48 (1997), 745750. 
[15] 
S. H. Owen and M. S. Daskin, Strategic facility location: A review, European Journal of Operational Research, 111 (1998), 423447. doi: 10.1016/S03772217(98)001866. 
[16] 
K. C. Ozkisacik, I. K. Altinel and N. Aras, Solving probabilistic multifacility Weber problem by vector quantization, OR Spectrum, 31 (2009), 533554. doi: 10.1007/s0029100801570. 
[17] 
S. Pasandideh and S. Niaki, Genetic application in a facility location problem with random demand within queuing framework, Journal of Intelligent Manufacturing, (2010). 
[18] 
S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous locationallocation problem, Annals of Operations Research, 123 (2003), 203222. doi: 10.1023/A:1026131531250. 
[19] 
E. Weiszfeld, Sur le point par lequel la somme des distances de n Points donnés est Minimum, Tohoku Mathematical Journal, 43 (1937), 355386. 
[20] 
J. Zhou and B. Liu, New stochastic models for capacitated locationallocation problem, Computers and Industrial Engineering, 45 (2003), 111125. doi: 10.1016/S03608352(03)000214. 
[21] 
J. Zhou, Uncapacitated facility layout problem with stochastic demands, in Proceedings of the Sixth National Conferenceof Operations Research Society of China, 2000, 904911. 
show all references
References:
[1] 
I. K. Altinel, K. C. Ozkisacik and N. Aras, Variable neighborhood search heuristics for the probabilistic multisource weber problem, Journal of the Operational Research Society, 62 (2011), 18131826. 
[2] 
N. Aras, M. Orbay and I. K. Altinel, Efficient heuristics for the rectilinear distance capacitated multifacility Weber problem, Journal of the Operational Research Society, 59 (2008), 6479. doi: 10.1057/palgrave.jors.2602262. 
[3] 
JP. Arnaout, Ant Colony Optimization algorithm for the Euclidean locationallocation problem with unknown number of facilities, Journal of Intelligent Manufacturing, 24 (2013), 4554. doi: 10.1007/s1084501105362. 
[4] 
M. Bischoff , T. Fleischmann and K. Klamroth, The multifacility locationallocation problem with polyhedral barriers, Computers and Operations Research, 36 (2009), 13761392. doi: 10.1016/j.cor.2008.02.014. 
[5] 
M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms, European Journal of Operational Research, 177 (2007), 2241. doi: 10.1016/j.ejor.2005.10.061. 
[6] 
J. Brimberg, P. Hansen, N. Mladenovi and E. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem, Operations Research, 48 (2000), 444460. doi: 10.1287/opre.48.3.444.12431. 
[7] 
M. D. H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated locationallocation problem, Journal of the Operational Research Society, 52 (2001), 821829. doi: 10.1057/palgrave.jors.2601176. 
[8] 
M. Jabalameli and A. Ghaderi, Hybrid algorithms for the uncapacitated continuous locationallocation problem, International Journal of Advanced Manufacturing Technology, 37 (2008), 202209. doi: 10.1007/s0017000709449. 
[9] 
S. Krau, Extensions du Problème de Weber, Ph.D thesis, Ecole Polytechnique de Montreal, 1996. 
[10] 
R. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem, Mathematical Programming, 3 (1972), 193209. 
[11] 
W. Liu and J. Xu, A study on facility locationallocation problem in mixed environment of randomness and fuzziness, Journal of Intelligent Manufacturing, 22 (2011), 389398. doi: 10.1007/s1084500902973. 
[12] 
R. Logendran and M. P. Terrell, Uncapacitated plant locationallocation problems with price sensitive stochasticdemands, Computers and Operations Research, 15 (1988), 189198. 
[13] 
E. Mehdizadeh, M. Tavarroth and S. Nousavi, Solving the Stochastic Capacitated LocationAllocation Problem by Using a New Hybrid Algorithm, Proceedings of the 15th WSEAS International Conference on Applied Mathematics, (2010), 2732. 
[14] 
M. Ohlemuller, Tabu search for large locationallocation problems, Journal of the Operational Research Society, 48 (1997), 745750. 
[15] 
S. H. Owen and M. S. Daskin, Strategic facility location: A review, European Journal of Operational Research, 111 (1998), 423447. doi: 10.1016/S03772217(98)001866. 
[16] 
K. C. Ozkisacik, I. K. Altinel and N. Aras, Solving probabilistic multifacility Weber problem by vector quantization, OR Spectrum, 31 (2009), 533554. doi: 10.1007/s0029100801570. 
[17] 
S. Pasandideh and S. Niaki, Genetic application in a facility location problem with random demand within queuing framework, Journal of Intelligent Manufacturing, (2010). 
[18] 
S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous locationallocation problem, Annals of Operations Research, 123 (2003), 203222. doi: 10.1023/A:1026131531250. 
[19] 
E. Weiszfeld, Sur le point par lequel la somme des distances de n Points donnés est Minimum, Tohoku Mathematical Journal, 43 (1937), 355386. 
[20] 
J. Zhou and B. Liu, New stochastic models for capacitated locationallocation problem, Computers and Industrial Engineering, 45 (2003), 111125. doi: 10.1016/S03608352(03)000214. 
[21] 
J. Zhou, Uncapacitated facility layout problem with stochastic demands, in Proceedings of the Sixth National Conferenceof Operations Research Society of China, 2000, 904911. 
[1] 
Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Twostage meanrisk stochastic mixed integer optimization model for locationallocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 27832804. doi: 10.3934/jimo.2020094 
[2] 
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 321332. doi: 10.3934/naco.2020028 
[3] 
Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial and Management Optimization, 2012, 8 (2) : 469484. doi: 10.3934/jimo.2012.8.469 
[4] 
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle locationallocation problems with customer priorities. Journal of Industrial and Management Optimization, 2021, 17 (4) : 17531769. doi: 10.3934/jimo.2020044 
[5] 
Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems  S, 2019, 12 (4&5) : 979987. doi: 10.3934/dcdss.2019066 
[6] 
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 6380. doi: 10.3934/jimo.2006.2.63 
[7] 
Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial and Management Optimization, 2016, 12 (4) : 11991214. doi: 10.3934/jimo.2016.12.1199 
[8] 
A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for seriesparallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial and Management Optimization, 2006, 2 (4) : 467479. doi: 10.3934/jimo.2006.2.467 
[9] 
Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2 (1) : 8197. doi: 10.3934/nhm.2007.2.81 
[10] 
Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete and Continuous Dynamical Systems  S, 2012, 5 (6) : 11471194. doi: 10.3934/dcdss.2012.5.1147 
[11] 
Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854863. doi: 10.3934/proc.2011.2011.854 
[12] 
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete and Continuous Dynamical Systems  B, 2021, 26 (5) : 27812804. doi: 10.3934/dcdsb.2020205 
[13] 
Cristina Anton, Jian Deng, Yau Shu Wong, Yile Zhang, Weiping Zhang, Stephan Gabos, Dorothy Yu Huang, Can Jin. Modeling and simulation for toxicity assessment. Mathematical Biosciences & Engineering, 2017, 14 (3) : 581606. doi: 10.3934/mbe.2017034 
[14] 
Tao Guan, Denghua Zhong, Bingyu Ren, Pu Cheng. Construction schedule optimization for high arch dams based on realtime interactive simulation. Journal of Industrial and Management Optimization, 2015, 11 (4) : 13211342. doi: 10.3934/jimo.2015.11.1321 
[15] 
C. Burgos, J.C. Cortés, L. Shaikhet, R.J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete and Continuous Dynamical Systems  S, 2021, 14 (4) : 12331244. doi: 10.3934/dcdss.2020356 
[16] 
Michele L. Joyner, Chelsea R. Ross, Colton Watts, Thomas C. Jones. A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing. Mathematical Biosciences & Engineering, 2014, 11 (6) : 14111429. doi: 10.3934/mbe.2014.11.1411 
[17] 
Longzhen Zhai, Shaohong Feng. A pedestrian evacuation model based on ant colony algorithm considering dynamic panic spread. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022065 
[18] 
Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 9911008. doi: 10.3934/dcds.2014.34.991 
[19] 
Ingenuin Gasser, Marcus Kraft. Modelling and simulation of fires in tunnel networks. Networks and Heterogeneous Media, 2008, 3 (4) : 691707. doi: 10.3934/nhm.2008.3.691 
[20] 
Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501528. doi: 10.3934/krm.2010.3.501 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]