-
Previous Article
A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises
- JIMO Home
- This Issue
-
Next Article
Improved approximating $2$-CatSP for $\sigma\geq 0.50$ with an unbalanced rounding matrix
Stability analysis of a delayed social epidemics model with general contact rate and its optimal control
1. | College of Electrical and Information engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China, China |
2. | Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco |
3. | Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China |
References:
[1] |
J. Adnani, K. Hattaf and N. Yousfi, Stability Analysis of a Stochastic SIR Epidemic Model with Specific Nonlinear Incidence Rate, International Journal of Stochastic Analysis, (2013), Article ID 431257, 4 pages. |
[2] |
E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115.
doi: 10.1016/S0362-546X(01)00528-4. |
[3] |
Centers for Disease Control, Alcohol-related disease impact (ARDI) software, Atlanta, GA: CDC, 2004. |
[4] |
Centers for Disease Control and Prevention, Binge Drinking,, , ().
|
[5] |
C. M. Chen and H. Yi, Trends in Alcohol-related Morbidity Among Short-stay Community Hospital Discharges United States, 1979-2007, US Department of Health and Human Services, Public Health Service, National Institutes of Health, 2010. |
[6] |
C. Chen and C. Storr, et al., Early-onset drug use and risk for drug dependence problems, Addictive Behaviors, 34 (2009), 319-322.
doi: 10.1016/j.addbeh.2008.10.021. |
[7] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[8] |
K. R. Fister, S. Lenhart and J. S. Mcnally, Optimizing chemotherapy in an HIV model, Electronic Journal of Differential Equations, 32 (1998), 1-12. |
[9] |
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, No. 1, Springer Verlag, Berlin-New York, 1975. |
[10] |
M. Glavas and J. Weinberg, Stress, alcohol consumption and the hypothalamic-pituitary-adrenal axis, in Nutrients, Stress, and Medical Disorders, 2005, 165-183.
doi: 10.1385/1-59259-952-4:165. |
[11] |
L. Göllmann, Theory and applications of optimal control problems with multiple time-delays, Journal of Industrial and management Optimization, 10 (2014), 413-441. |
[12] |
L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optim. Control Appl. Meth., 32 (2008), 1-25. |
[13] |
A. Halanay and J. A. Yorke, Some new results and problems in the theory of differential-delay equations, SIAM Rev, 13 (1971), 55-80.
doi: 10.1137/1013004. |
[14] |
J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[15] |
K. Hattaf, A. A. Lashari, Y. Louartassi and N. Yousfi, A delayed SIR epidemic model with general incidence rate, Electronic Journal of Qualitative Theory of Differential Equations, 3 (2013), 1-9. |
[16] |
K. Hattaf and N. Yousfi, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method, ISRN Biomathematics, 2012 (2012), Article ID 215124, 7 pages.
doi: 10.5402/2012/215124. |
[17] |
K. Hattaf, N. Yousfi and A. Tridane, A Delay virus dynamics model with general incidence rate, Differ. Equ. Dyn. Syst., 22 (2014), 181-190.
doi: 10.1007/s12591-013-0167-5. |
[18] |
K. Hattaf, N. Yousfi and A. Tridane, Stability analysis of a virus dynamics model with general incidence rate and two delays, Appl. Math. Comput., 221 (2013), 514-521.
doi: 10.1016/j.amc.2013.07.005. |
[19] |
K. Hattaf and N. Yousfi, Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response, Comp. Appl. Math., 34 (2015), 807-818.
doi: 10.1007/s40314-014-0143-x. |
[20] |
F. Herbert, Heavy Drinking: The Myth of Alcoholism as a Disease, University of California Press, 1988. |
[21] |
H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335-356.
doi: 10.1016/0025-5564(76)90132-2. |
[22] |
G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Applied Mathematics Letters, 24 (2011), 1199-1203.
doi: 10.1016/j.aml.2011.02.007. |
[23] |
H. F. Huo and N. N. Song, Global stability for a binge drinking model with two stages, Discrete Dynamics in Nature and Society, (2012), Art. ID 829386, 15pp. |
[24] |
Y. Kuang, Delay Differential Equations with Application in Population Dynamics, Academic Press, New York, 1993. |
[25] |
E. Kuntsche and R. Knibbe, et al., Why do young people drink? A review of drinking motives, Clinical Psychology Review, 25 (2005), 841-861.
doi: 10.1016/j.cpr.2005.06.002. |
[26] |
H. Laarabi, A. Abta and K. Hattaf, Optimal control of a delayed sirs epidemic model with vaccination and treatment, Acta Biotheor., 63 (2015), 87-97.
doi: 10.1007/s10441-015-9244-1. |
[27] |
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. |
[28] |
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology Series, Boca Raton, FL, 2007. |
[29] |
E. M. Lotfi, M. Maziane, K. Hattaf and N. Yousfi, Partial differential equations of an epidemic model with spatial diffusion, International Journal of Partial Differential Equations, 2014 (2014), Article ID 186437, 6pp.
doi: 10.1155/2014/186437. |
[30] |
D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press, New York, 1982. |
[31] |
W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54 (2002), 581-591.
doi: 10.2748/tmj/1113247650. |
[32] |
C. Connell McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete, Nonlinear Analysis: Real World Applications, 11 (2010), 55-59.
doi: 10.1016/j.nonrwa.2008.10.014. |
[33] |
C. Connell McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence, Mathematical Biosciences and Engineering, 7 (2010), 837-850.
doi: 10.3934/mbe.2010.7.837. |
[34] |
A. K. Misra, A. Sharma and V. Singh, Effect of awareness programs in controlling the prevelence of an epidemic with time delay, Journal of Biological Systems, 19 (2011), 389-402.
doi: 10.1142/S0218339011004020. |
[35] |
A. Mubayi and P. Greenwood, et al., The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments, Socio-Economic Planning Sciences, 44 (2010), 45-56.
doi: 10.1016/j.seps.2009.02.002. |
[36] |
D. Muller and R. Koch, et al., Neurophisiologic findings in chronic alcohol abuse, Pyschiatr. Neurol. Med. Pyschol., 37 (1985), 129-132. |
[37] |
G. Mulone and B. Straughan, Modeling binge drinking, International Journal of Biomathematics, 5 (2012), 1250005, 14pp.
doi: 10.1142/S1793524511001453. |
[38] |
S. S. Mushayabasa and C. P. Bhunu, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea, Nonlinear Dynamics, 66 (2011), 695-706.
doi: 10.1007/s11071-011-9942-4. |
[39] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New Jersey, 1962. |
[40] |
R. Room, T. Babor and J. Rehm, Alcohol and public health, The Lancet, 365 (2005), 519-530.
doi: 10.1016/S0140-6736(05)70276-2. |
[41] |
F. Sanchez and X. Wang, et al., Drinking as an Epidemica Simple Mathematical Model with Recovery and Relapse, Guide to Evidence-Based Relapse Prevention, Elsevier, New York, 2007. |
[42] |
Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947.
doi: 10.1016/S0362-546X(99)00138-8. |
[43] |
G. Testino, Alcoholic diseases in hepato-gastroenterology: A point of view, Hepato-Gastroenterology, 55 (2008), 371-377. |
[44] |
H. Walter and K. Gutierrez, et al., Gender specific differences in alcoholism: Implications for treatment, Arch. Womens Ment. Health, 6 (2003), 253-258.
doi: 10.1007/s00737-003-0014-8. |
[45] |
X.-Y. Wang, H.-F. Huo, Q.-K. Kong and W.-X. Shi, Optimal control strategies in an alcoholism model, Abstract and Applied Analysis, (2014), Article ID 954069, 18pp.
doi: 10.1155/2014/954069. |
[46] |
R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA, 10 (2009), 3175-3189.
doi: 10.1016/j.nonrwa.2008.10.013. |
show all references
References:
[1] |
J. Adnani, K. Hattaf and N. Yousfi, Stability Analysis of a Stochastic SIR Epidemic Model with Specific Nonlinear Incidence Rate, International Journal of Stochastic Analysis, (2013), Article ID 431257, 4 pages. |
[2] |
E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115.
doi: 10.1016/S0362-546X(01)00528-4. |
[3] |
Centers for Disease Control, Alcohol-related disease impact (ARDI) software, Atlanta, GA: CDC, 2004. |
[4] |
Centers for Disease Control and Prevention, Binge Drinking,, , ().
|
[5] |
C. M. Chen and H. Yi, Trends in Alcohol-related Morbidity Among Short-stay Community Hospital Discharges United States, 1979-2007, US Department of Health and Human Services, Public Health Service, National Institutes of Health, 2010. |
[6] |
C. Chen and C. Storr, et al., Early-onset drug use and risk for drug dependence problems, Addictive Behaviors, 34 (2009), 319-322.
doi: 10.1016/j.addbeh.2008.10.021. |
[7] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[8] |
K. R. Fister, S. Lenhart and J. S. Mcnally, Optimizing chemotherapy in an HIV model, Electronic Journal of Differential Equations, 32 (1998), 1-12. |
[9] |
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, No. 1, Springer Verlag, Berlin-New York, 1975. |
[10] |
M. Glavas and J. Weinberg, Stress, alcohol consumption and the hypothalamic-pituitary-adrenal axis, in Nutrients, Stress, and Medical Disorders, 2005, 165-183.
doi: 10.1385/1-59259-952-4:165. |
[11] |
L. Göllmann, Theory and applications of optimal control problems with multiple time-delays, Journal of Industrial and management Optimization, 10 (2014), 413-441. |
[12] |
L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optim. Control Appl. Meth., 32 (2008), 1-25. |
[13] |
A. Halanay and J. A. Yorke, Some new results and problems in the theory of differential-delay equations, SIAM Rev, 13 (1971), 55-80.
doi: 10.1137/1013004. |
[14] |
J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[15] |
K. Hattaf, A. A. Lashari, Y. Louartassi and N. Yousfi, A delayed SIR epidemic model with general incidence rate, Electronic Journal of Qualitative Theory of Differential Equations, 3 (2013), 1-9. |
[16] |
K. Hattaf and N. Yousfi, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method, ISRN Biomathematics, 2012 (2012), Article ID 215124, 7 pages.
doi: 10.5402/2012/215124. |
[17] |
K. Hattaf, N. Yousfi and A. Tridane, A Delay virus dynamics model with general incidence rate, Differ. Equ. Dyn. Syst., 22 (2014), 181-190.
doi: 10.1007/s12591-013-0167-5. |
[18] |
K. Hattaf, N. Yousfi and A. Tridane, Stability analysis of a virus dynamics model with general incidence rate and two delays, Appl. Math. Comput., 221 (2013), 514-521.
doi: 10.1016/j.amc.2013.07.005. |
[19] |
K. Hattaf and N. Yousfi, Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response, Comp. Appl. Math., 34 (2015), 807-818.
doi: 10.1007/s40314-014-0143-x. |
[20] |
F. Herbert, Heavy Drinking: The Myth of Alcoholism as a Disease, University of California Press, 1988. |
[21] |
H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335-356.
doi: 10.1016/0025-5564(76)90132-2. |
[22] |
G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Applied Mathematics Letters, 24 (2011), 1199-1203.
doi: 10.1016/j.aml.2011.02.007. |
[23] |
H. F. Huo and N. N. Song, Global stability for a binge drinking model with two stages, Discrete Dynamics in Nature and Society, (2012), Art. ID 829386, 15pp. |
[24] |
Y. Kuang, Delay Differential Equations with Application in Population Dynamics, Academic Press, New York, 1993. |
[25] |
E. Kuntsche and R. Knibbe, et al., Why do young people drink? A review of drinking motives, Clinical Psychology Review, 25 (2005), 841-861.
doi: 10.1016/j.cpr.2005.06.002. |
[26] |
H. Laarabi, A. Abta and K. Hattaf, Optimal control of a delayed sirs epidemic model with vaccination and treatment, Acta Biotheor., 63 (2015), 87-97.
doi: 10.1007/s10441-015-9244-1. |
[27] |
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. |
[28] |
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology Series, Boca Raton, FL, 2007. |
[29] |
E. M. Lotfi, M. Maziane, K. Hattaf and N. Yousfi, Partial differential equations of an epidemic model with spatial diffusion, International Journal of Partial Differential Equations, 2014 (2014), Article ID 186437, 6pp.
doi: 10.1155/2014/186437. |
[30] |
D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press, New York, 1982. |
[31] |
W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54 (2002), 581-591.
doi: 10.2748/tmj/1113247650. |
[32] |
C. Connell McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete, Nonlinear Analysis: Real World Applications, 11 (2010), 55-59.
doi: 10.1016/j.nonrwa.2008.10.014. |
[33] |
C. Connell McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence, Mathematical Biosciences and Engineering, 7 (2010), 837-850.
doi: 10.3934/mbe.2010.7.837. |
[34] |
A. K. Misra, A. Sharma and V. Singh, Effect of awareness programs in controlling the prevelence of an epidemic with time delay, Journal of Biological Systems, 19 (2011), 389-402.
doi: 10.1142/S0218339011004020. |
[35] |
A. Mubayi and P. Greenwood, et al., The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments, Socio-Economic Planning Sciences, 44 (2010), 45-56.
doi: 10.1016/j.seps.2009.02.002. |
[36] |
D. Muller and R. Koch, et al., Neurophisiologic findings in chronic alcohol abuse, Pyschiatr. Neurol. Med. Pyschol., 37 (1985), 129-132. |
[37] |
G. Mulone and B. Straughan, Modeling binge drinking, International Journal of Biomathematics, 5 (2012), 1250005, 14pp.
doi: 10.1142/S1793524511001453. |
[38] |
S. S. Mushayabasa and C. P. Bhunu, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea, Nonlinear Dynamics, 66 (2011), 695-706.
doi: 10.1007/s11071-011-9942-4. |
[39] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New Jersey, 1962. |
[40] |
R. Room, T. Babor and J. Rehm, Alcohol and public health, The Lancet, 365 (2005), 519-530.
doi: 10.1016/S0140-6736(05)70276-2. |
[41] |
F. Sanchez and X. Wang, et al., Drinking as an Epidemica Simple Mathematical Model with Recovery and Relapse, Guide to Evidence-Based Relapse Prevention, Elsevier, New York, 2007. |
[42] |
Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947.
doi: 10.1016/S0362-546X(99)00138-8. |
[43] |
G. Testino, Alcoholic diseases in hepato-gastroenterology: A point of view, Hepato-Gastroenterology, 55 (2008), 371-377. |
[44] |
H. Walter and K. Gutierrez, et al., Gender specific differences in alcoholism: Implications for treatment, Arch. Womens Ment. Health, 6 (2003), 253-258.
doi: 10.1007/s00737-003-0014-8. |
[45] |
X.-Y. Wang, H.-F. Huo, Q.-K. Kong and W.-X. Shi, Optimal control strategies in an alcoholism model, Abstract and Applied Analysis, (2014), Article ID 954069, 18pp.
doi: 10.1155/2014/954069. |
[46] |
R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA, 10 (2009), 3175-3189.
doi: 10.1016/j.nonrwa.2008.10.013. |
[1] |
Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024 |
[2] |
Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 |
[3] |
Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619 |
[4] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[5] |
Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control and Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859 |
[6] |
Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Linear optimal control of time delay systems via Hermite wavelet. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 143-156. doi: 10.3934/naco.2019044 |
[7] |
Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031 |
[8] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3541-3556. doi: 10.3934/dcdss.2020441 |
[9] |
Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226 |
[10] |
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 |
[11] |
Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175 |
[12] |
Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1683-1695. doi: 10.3934/dcdss.2020098 |
[13] |
Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283 |
[14] |
Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 |
[15] |
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 |
[16] |
Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735 |
[17] |
Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022035 |
[18] |
Chongyang Liu, Meijia Han. Time-delay optimal control of a fed-batch production involving multiple feeds. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1697-1709. doi: 10.3934/dcdss.2020099 |
[19] |
Canghua Jiang, Cheng Jin, Ming Yu, Zongqi Xu. Direct optimal control for time-delay systems via a lifted multiple shooting algorithm. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021135 |
[20] |
Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]