• Previous Article
    Semicontinuity of approximate solution mappings to generalized vector equilibrium problems
  • JIMO Home
  • This Issue
  • Next Article
    Stability analysis of a delayed social epidemics model with general contact rate and its optimal control
October  2016, 12(4): 1287-1301. doi: 10.3934/jimo.2016.12.1287

A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises

1. 

College of Sciences, Shandong Jiaotong University, Jinan 250023, China

Received  March 2015 Revised  June 2015 Published  January 2016

This paper is concerned with a mean-field type optimal control problem, whose new features are that the state $x^v_t$ is partially observed by a noisy process $y(t)$, and the control problem is time inconsistent in the sense that Bellman optimality principle does not work. A necessary condition for optimality is derived by convex variation, dual technique and backward stochastic differential equations (BSDEs). A linear-quadratic (LQ) optimal control example is studied, and the optimal solution is obtained by the optimal filtering for BSDEs and the necessary condition.
Citation: Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287
References:
[1]

D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type,, Appl. Math. Optim., 63 (2011), 341.  doi: 10.1007/s00245-010-9123-8.  Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[3]

R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations,, Stochastic Process. Appl., 119 (2009), 3133.  doi: 10.1016/j.spa.2009.05.002.  Google Scholar

[4]

X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection,, IEEE Trans. Automat. Control, 59 (2014), 1833.  doi: 10.1109/TAC.2014.2311875.  Google Scholar

[5]

R. Elliott, X. Li and Y. Ni, Discrete time mean-field stochastic linear quadratic optimal control problems,, Automatica, 49 (2013), 3222.  doi: 10.1016/j.automatica.2013.08.017.  Google Scholar

[6]

M. Hafayed, A mean-field maximum principle for optimal control of forward-backward stochastic differential equations with Poisson jump processes,, Int. J. Dynam. Control, 1 (2013), 300.  doi: 10.1007/s40435-013-0027-8.  Google Scholar

[7]

M. Hafayed, A mean-field necessary and sufficient conditions for optimal singular stochastic control,, Commun. Math. Stat., 1 (2013), 417.  doi: 10.1007/s40304-014-0023-0.  Google Scholar

[8]

M. Hafayed, Singular mean-field optimal control for forward-backward stochastic systems and applications to finance,, Int. J. Dynam. Control, 2 (2014), 542.  doi: 10.1007/s40435-014-0080-y.  Google Scholar

[9]

M. Hafayed, A. Abba and S. Abbas, On mean-field stochastic maximum principle for near optimal controls for poisson jump diffusion with applications,, Int. J. Dynam. Control, 2 (2014), 262.  doi: 10.1007/s40435-013-0040-y.  Google Scholar

[10]

M. Hafayed and S. Abbas, On near-optimal mean-field stochastic singular controls: Necessary and sufficient conditions for near-optimality,, J. Optim. Theory Appl., 160 (2014), 778.  doi: 10.1007/s10957-013-0361-1.  Google Scholar

[11]

J. Huang, X. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon,, Math. Control Relat. Fields, 5 (2015), 97.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[12]

J. Huang, G. Wang and Z. Wu, Optimal premium policy of an insurance firm: Full and partial information,, Insurance: Math. Econ., 47 (2010), 208.  doi: 10.1016/j.insmatheco.2010.04.007.  Google Scholar

[13]

T. Meyer-Brandis, B. Øksendal and X. Zhou, A mean-field stochastic maximum principle via Malliavin calculus,, Stochastics, 84 (2012), 643.  doi: 10.1080/17442508.2011.651619.  Google Scholar

[14]

Y. Ni, J. Zhang and X. Li, Indefinite mean-field stochastic linear-quadratic optimal control,, IEEE Trans. Automat. Control, 60 (2015), 1786.  doi: 10.1109/TAC.2014.2385253.  Google Scholar

[15]

G. Wang and Z. Wu, Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems,, J. Math. Anal. Appl., 342 (2008), 1280.  doi: 10.1016/j.jmaa.2007.12.072.  Google Scholar

[16]

G. Wang, Z. Wu and J. Xiong, Maximum principle for forward-backward stochastic control systems with corrected state and observation noises,, SIAM J. Control Optim., 51 (2013), 491.  doi: 10.1137/110846920.  Google Scholar

[17]

G. Wang, Z. Wu and C. Zhang, Maximum principles for partially observed mean-field stochastic systems with applications to financial engineering,, Proceedings of the 33rd Chinese Control Conference, (2014), 28.  doi: 10.1109/ChiCC.2014.6895853.  Google Scholar

[18]

G. Wang, C. Zhang and W. Zhang, Stochastic maximum principle for mean-field type optimal control under partial information,, IEEE Trans. Automat. Control, 59 (2014), 522.  doi: 10.1109/TAC.2013.2273265.  Google Scholar

[19]

W. M. Wonham, On the separation theorem of stochastic control,, SIAM J. Control, 6 (1968), 312.  doi: 10.1137/0306023.  Google Scholar

[20]

H. Xiao and G. Wang, The filtering equations of forward-backward stochastic systems with random jumps and applications to partial information stochastic optimal control,, Stoch. Anal. Appl., 28 (2010), 1003.  doi: 10.1080/07362994.2010.515480.  Google Scholar

[21]

J. Xiong, An Introduction to Stochastic Filtering Theory,, Oxford University Press, (2008).   Google Scholar

[22]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations,, SIAM J. Control Optim., 51 (2013), 2809.  doi: 10.1137/120892477.  Google Scholar

show all references

References:
[1]

D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type,, Appl. Math. Optim., 63 (2011), 341.  doi: 10.1007/s00245-010-9123-8.  Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[3]

R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations,, Stochastic Process. Appl., 119 (2009), 3133.  doi: 10.1016/j.spa.2009.05.002.  Google Scholar

[4]

X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection,, IEEE Trans. Automat. Control, 59 (2014), 1833.  doi: 10.1109/TAC.2014.2311875.  Google Scholar

[5]

R. Elliott, X. Li and Y. Ni, Discrete time mean-field stochastic linear quadratic optimal control problems,, Automatica, 49 (2013), 3222.  doi: 10.1016/j.automatica.2013.08.017.  Google Scholar

[6]

M. Hafayed, A mean-field maximum principle for optimal control of forward-backward stochastic differential equations with Poisson jump processes,, Int. J. Dynam. Control, 1 (2013), 300.  doi: 10.1007/s40435-013-0027-8.  Google Scholar

[7]

M. Hafayed, A mean-field necessary and sufficient conditions for optimal singular stochastic control,, Commun. Math. Stat., 1 (2013), 417.  doi: 10.1007/s40304-014-0023-0.  Google Scholar

[8]

M. Hafayed, Singular mean-field optimal control for forward-backward stochastic systems and applications to finance,, Int. J. Dynam. Control, 2 (2014), 542.  doi: 10.1007/s40435-014-0080-y.  Google Scholar

[9]

M. Hafayed, A. Abba and S. Abbas, On mean-field stochastic maximum principle for near optimal controls for poisson jump diffusion with applications,, Int. J. Dynam. Control, 2 (2014), 262.  doi: 10.1007/s40435-013-0040-y.  Google Scholar

[10]

M. Hafayed and S. Abbas, On near-optimal mean-field stochastic singular controls: Necessary and sufficient conditions for near-optimality,, J. Optim. Theory Appl., 160 (2014), 778.  doi: 10.1007/s10957-013-0361-1.  Google Scholar

[11]

J. Huang, X. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon,, Math. Control Relat. Fields, 5 (2015), 97.  doi: 10.3934/mcrf.2015.5.97.  Google Scholar

[12]

J. Huang, G. Wang and Z. Wu, Optimal premium policy of an insurance firm: Full and partial information,, Insurance: Math. Econ., 47 (2010), 208.  doi: 10.1016/j.insmatheco.2010.04.007.  Google Scholar

[13]

T. Meyer-Brandis, B. Øksendal and X. Zhou, A mean-field stochastic maximum principle via Malliavin calculus,, Stochastics, 84 (2012), 643.  doi: 10.1080/17442508.2011.651619.  Google Scholar

[14]

Y. Ni, J. Zhang and X. Li, Indefinite mean-field stochastic linear-quadratic optimal control,, IEEE Trans. Automat. Control, 60 (2015), 1786.  doi: 10.1109/TAC.2014.2385253.  Google Scholar

[15]

G. Wang and Z. Wu, Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems,, J. Math. Anal. Appl., 342 (2008), 1280.  doi: 10.1016/j.jmaa.2007.12.072.  Google Scholar

[16]

G. Wang, Z. Wu and J. Xiong, Maximum principle for forward-backward stochastic control systems with corrected state and observation noises,, SIAM J. Control Optim., 51 (2013), 491.  doi: 10.1137/110846920.  Google Scholar

[17]

G. Wang, Z. Wu and C. Zhang, Maximum principles for partially observed mean-field stochastic systems with applications to financial engineering,, Proceedings of the 33rd Chinese Control Conference, (2014), 28.  doi: 10.1109/ChiCC.2014.6895853.  Google Scholar

[18]

G. Wang, C. Zhang and W. Zhang, Stochastic maximum principle for mean-field type optimal control under partial information,, IEEE Trans. Automat. Control, 59 (2014), 522.  doi: 10.1109/TAC.2013.2273265.  Google Scholar

[19]

W. M. Wonham, On the separation theorem of stochastic control,, SIAM J. Control, 6 (1968), 312.  doi: 10.1137/0306023.  Google Scholar

[20]

H. Xiao and G. Wang, The filtering equations of forward-backward stochastic systems with random jumps and applications to partial information stochastic optimal control,, Stoch. Anal. Appl., 28 (2010), 1003.  doi: 10.1080/07362994.2010.515480.  Google Scholar

[21]

J. Xiong, An Introduction to Stochastic Filtering Theory,, Oxford University Press, (2008).   Google Scholar

[22]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations,, SIAM J. Control Optim., 51 (2013), 2809.  doi: 10.1137/120892477.  Google Scholar

[1]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[2]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[3]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[6]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[7]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[11]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[12]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[13]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[14]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[15]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[16]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[17]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[18]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[19]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[20]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]