-
Previous Article
Revenue congestion: An application of data envelopment analysis
- JIMO Home
- This Issue
-
Next Article
A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises
Semicontinuity of approximate solution mappings to generalized vector equilibrium problems
1. | College of Sciences, Chongqing Jiaotong University, Chongqing, 400074 |
2. | College of Mathematics and Statistics, Chongqing University, Chongqing, 401331 |
References:
[1] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.
doi: 10.1016/j.jmaa.2004.03.014. |
[2] |
L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.
doi: 10.1007/s10957-007-9250-9. |
[3] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984).
|
[4] |
B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems,, J. Glob. Optim., 56 (2013), 1515.
doi: 10.1007/s10898-012-9904-5. |
[5] |
C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.
doi: 10.3934/jimo.2007.3.519. |
[6] |
C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.
|
[7] |
C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.
doi: 10.1007/s10898-008-9376-9. |
[8] |
Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.
doi: 10.1007/s10898-004-2692-9. |
[9] |
C. Chiang, O. Chadli and J. C. Yao, Genralized Vector equilibrium problems with trifunctions,, J. Glob. Optim., 30 (2004), 135.
doi: 10.1007/s10898-004-8273-0. |
[10] |
J. F. Fu, Generalized Vector quasi-equilibrium problems,, Math.Methods Oper.Res., 52 (2000), 57.
doi: 10.1007/s001860000058. |
[11] |
J. F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set,, J. Glob. Optim., 31 (2005), 109.
doi: 10.1007/s10898-004-4274-2. |
[12] |
F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories,, Kluwer Academic Publishers, (2000).
doi: 10.1007/978-1-4613-0299-5. |
[13] |
X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.
doi: 10.1007/s10957-008-9429-8. |
[14] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[15] |
Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems,, Appl. Math. Lett., 28 (2014), 38.
doi: 10.1016/j.aml.2013.09.006. |
[16] |
N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.
doi: 10.1016/j.mcm.2005.06.010. |
[17] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[18] |
K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems,, J. Ind. Manag. Optim., 4 (2008), 167.
doi: 10.3934/jimo.2008.4.167. |
[19] |
K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.
doi: 10.1007/s10898-007-9210-9. |
[20] |
K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.
|
[21] |
K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasivector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.
|
[22] |
S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim. Theory Appl., 113 (2002), 283.
doi: 10.1023/A:1014830925232. |
[23] |
S. J. Li and C. R. Chen, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.
doi: 10.1016/j.na.2008.02.032. |
[24] |
S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.
doi: 10.1007/s10957-010-9736-8. |
[25] |
S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.
doi: 10.1007/s10898-012-9985-1. |
[26] |
L. J. Lin, Q. H. Ansari and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems,, J. Optim. Theory Appl., 117 (2003), 121.
doi: 10.1023/A:1023656507786. |
[27] |
T. Tanino, Stability and sensitivity analysis in convex vector optimization,, SIAM J. Control. Optim., 26 (1988), 521.
doi: 10.1137/0326031. |
[28] |
Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem,, J. Ind. Manag. Optim., 10 (2014), 1225.
doi: 10.3934/jimo.2014.10.1225. |
[29] |
R. Wangkeeree, R. Wangkeeree and P. Preechasilp, Continuity of the solution mappings to parametric generalized vector equilibrium problems,, Appl. Math. Lett., 29 (2014), 42.
doi: 10.1016/j.aml.2013.10.012. |
[30] |
W. Y. Zhang, Z. M. Fang and Y. Zhang, A note on the lower semicontinuity of efficient solutions for parametric vector equilibrium problems,, Appl. Math. Lett., 26 (2013), 469.
doi: 10.1016/j.aml.2012.11.010. |
show all references
References:
[1] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.
doi: 10.1016/j.jmaa.2004.03.014. |
[2] |
L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.
doi: 10.1007/s10957-007-9250-9. |
[3] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984).
|
[4] |
B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems,, J. Glob. Optim., 56 (2013), 1515.
doi: 10.1007/s10898-012-9904-5. |
[5] |
C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.
doi: 10.3934/jimo.2007.3.519. |
[6] |
C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.
|
[7] |
C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.
doi: 10.1007/s10898-008-9376-9. |
[8] |
Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.
doi: 10.1007/s10898-004-2692-9. |
[9] |
C. Chiang, O. Chadli and J. C. Yao, Genralized Vector equilibrium problems with trifunctions,, J. Glob. Optim., 30 (2004), 135.
doi: 10.1007/s10898-004-8273-0. |
[10] |
J. F. Fu, Generalized Vector quasi-equilibrium problems,, Math.Methods Oper.Res., 52 (2000), 57.
doi: 10.1007/s001860000058. |
[11] |
J. F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set,, J. Glob. Optim., 31 (2005), 109.
doi: 10.1007/s10898-004-4274-2. |
[12] |
F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories,, Kluwer Academic Publishers, (2000).
doi: 10.1007/978-1-4613-0299-5. |
[13] |
X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.
doi: 10.1007/s10957-008-9429-8. |
[14] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.
doi: 10.1007/s10957-008-9379-1. |
[15] |
Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems,, Appl. Math. Lett., 28 (2014), 38.
doi: 10.1016/j.aml.2013.09.006. |
[16] |
N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.
doi: 10.1016/j.mcm.2005.06.010. |
[17] |
P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.
doi: 10.1007/s10957-007-9190-4. |
[18] |
K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems,, J. Ind. Manag. Optim., 4 (2008), 167.
doi: 10.3934/jimo.2008.4.167. |
[19] |
K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.
doi: 10.1007/s10898-007-9210-9. |
[20] |
K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.
|
[21] |
K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasivector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.
|
[22] |
S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim. Theory Appl., 113 (2002), 283.
doi: 10.1023/A:1014830925232. |
[23] |
S. J. Li and C. R. Chen, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.
doi: 10.1016/j.na.2008.02.032. |
[24] |
S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.
doi: 10.1007/s10957-010-9736-8. |
[25] |
S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.
doi: 10.1007/s10898-012-9985-1. |
[26] |
L. J. Lin, Q. H. Ansari and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems,, J. Optim. Theory Appl., 117 (2003), 121.
doi: 10.1023/A:1023656507786. |
[27] |
T. Tanino, Stability and sensitivity analysis in convex vector optimization,, SIAM J. Control. Optim., 26 (1988), 521.
doi: 10.1137/0326031. |
[28] |
Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem,, J. Ind. Manag. Optim., 10 (2014), 1225.
doi: 10.3934/jimo.2014.10.1225. |
[29] |
R. Wangkeeree, R. Wangkeeree and P. Preechasilp, Continuity of the solution mappings to parametric generalized vector equilibrium problems,, Appl. Math. Lett., 29 (2014), 42.
doi: 10.1016/j.aml.2013.10.012. |
[30] |
W. Y. Zhang, Z. M. Fang and Y. Zhang, A note on the lower semicontinuity of efficient solutions for parametric vector equilibrium problems,, Appl. Math. Lett., 26 (2013), 469.
doi: 10.1016/j.aml.2012.11.010. |
[1] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[4] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[5] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[6] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[7] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[8] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[9] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[10] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[11] |
Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151 |
[12] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[13] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[14] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[15] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[16] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[17] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[18] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[19] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[20] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]