October  2016, 12(4): 1303-1309. doi: 10.3934/jimo.2016.12.1303

Semicontinuity of approximate solution mappings to generalized vector equilibrium problems

1. 

College of Sciences, Chongqing Jiaotong University, Chongqing, 400074

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331

Received  July 2014 Revised  October 2015 Published  January 2016

In this paper, the lower semicontinuity of the approximate solution mapping to generalized strong vector equilibrium problems is established by using a new proof method which is different from the ones used in the literature. Simultaneously, we also obtain the upper semicontinuity of the approximate solution mapping without the assumptions about monotonicity and approximate solution mappings. Some examples are given to illustrate our results.
Citation: Qilin Wang, Shengji Li. Semicontinuity of approximate solution mappings to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1303-1309. doi: 10.3934/jimo.2016.12.1303
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984).   Google Scholar

[4]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems,, J. Glob. Optim., 56 (2013), 1515.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[5]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[6]

C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.   Google Scholar

[7]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

C. Chiang, O. Chadli and J. C. Yao, Genralized Vector equilibrium problems with trifunctions,, J. Glob. Optim., 30 (2004), 135.  doi: 10.1007/s10898-004-8273-0.  Google Scholar

[10]

J. F. Fu, Generalized Vector quasi-equilibrium problems,, Math.Methods Oper.Res., 52 (2000), 57.  doi: 10.1007/s001860000058.  Google Scholar

[11]

J. F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set,, J. Glob. Optim., 31 (2005), 109.  doi: 10.1007/s10898-004-4274-2.  Google Scholar

[12]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories,, Kluwer Academic Publishers, (2000).  doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[13]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[14]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[15]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems,, Appl. Math. Lett., 28 (2014), 38.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[16]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[17]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[18]

K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems,, J. Ind. Manag. Optim., 4 (2008), 167.  doi: 10.3934/jimo.2008.4.167.  Google Scholar

[19]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[20]

K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.   Google Scholar

[21]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasivector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.   Google Scholar

[22]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim. Theory Appl., 113 (2002), 283.  doi: 10.1023/A:1014830925232.  Google Scholar

[23]

S. J. Li and C. R. Chen, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[24]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[25]

S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.  doi: 10.1007/s10898-012-9985-1.  Google Scholar

[26]

L. J. Lin, Q. H. Ansari and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems,, J. Optim. Theory Appl., 117 (2003), 121.  doi: 10.1023/A:1023656507786.  Google Scholar

[27]

T. Tanino, Stability and sensitivity analysis in convex vector optimization,, SIAM J. Control. Optim., 26 (1988), 521.  doi: 10.1137/0326031.  Google Scholar

[28]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem,, J. Ind. Manag. Optim., 10 (2014), 1225.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

[29]

R. Wangkeeree, R. Wangkeeree and P. Preechasilp, Continuity of the solution mappings to parametric generalized vector equilibrium problems,, Appl. Math. Lett., 29 (2014), 42.  doi: 10.1016/j.aml.2013.10.012.  Google Scholar

[30]

W. Y. Zhang, Z. M. Fang and Y. Zhang, A note on the lower semicontinuity of efficient solutions for parametric vector equilibrium problems,, Appl. Math. Lett., 26 (2013), 469.  doi: 10.1016/j.aml.2012.11.010.  Google Scholar

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984).   Google Scholar

[4]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems,, J. Glob. Optim., 56 (2013), 1515.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[5]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[6]

C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.   Google Scholar

[7]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

C. Chiang, O. Chadli and J. C. Yao, Genralized Vector equilibrium problems with trifunctions,, J. Glob. Optim., 30 (2004), 135.  doi: 10.1007/s10898-004-8273-0.  Google Scholar

[10]

J. F. Fu, Generalized Vector quasi-equilibrium problems,, Math.Methods Oper.Res., 52 (2000), 57.  doi: 10.1007/s001860000058.  Google Scholar

[11]

J. F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set,, J. Glob. Optim., 31 (2005), 109.  doi: 10.1007/s10898-004-4274-2.  Google Scholar

[12]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories,, Kluwer Academic Publishers, (2000).  doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[13]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[14]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[15]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems,, Appl. Math. Lett., 28 (2014), 38.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[16]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[17]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[18]

K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems,, J. Ind. Manag. Optim., 4 (2008), 167.  doi: 10.3934/jimo.2008.4.167.  Google Scholar

[19]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[20]

K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.   Google Scholar

[21]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasivector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.   Google Scholar

[22]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim. Theory Appl., 113 (2002), 283.  doi: 10.1023/A:1014830925232.  Google Scholar

[23]

S. J. Li and C. R. Chen, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[24]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[25]

S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.  doi: 10.1007/s10898-012-9985-1.  Google Scholar

[26]

L. J. Lin, Q. H. Ansari and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems,, J. Optim. Theory Appl., 117 (2003), 121.  doi: 10.1023/A:1023656507786.  Google Scholar

[27]

T. Tanino, Stability and sensitivity analysis in convex vector optimization,, SIAM J. Control. Optim., 26 (1988), 521.  doi: 10.1137/0326031.  Google Scholar

[28]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem,, J. Ind. Manag. Optim., 10 (2014), 1225.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

[29]

R. Wangkeeree, R. Wangkeeree and P. Preechasilp, Continuity of the solution mappings to parametric generalized vector equilibrium problems,, Appl. Math. Lett., 29 (2014), 42.  doi: 10.1016/j.aml.2013.10.012.  Google Scholar

[30]

W. Y. Zhang, Z. M. Fang and Y. Zhang, A note on the lower semicontinuity of efficient solutions for parametric vector equilibrium problems,, Appl. Math. Lett., 26 (2013), 469.  doi: 10.1016/j.aml.2012.11.010.  Google Scholar

[1]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[4]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[5]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[6]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[7]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[8]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[9]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[10]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[11]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[12]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[13]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[14]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[15]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[16]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[17]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]