-
Previous Article
Merton problem in an infinite horizon and a discrete time with frictions
- JIMO Home
- This Issue
-
Next Article
Semicontinuity of approximate solution mappings to generalized vector equilibrium problems
Revenue congestion: An application of data envelopment analysis
1. | Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran |
2. | Department of Financial Engineering, Faculty of Engineering, University of Science and Culture, Tehran, Iran |
3. | Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran, Iran |
References:
[1] |
G. R. Amin and M. Toloo, Finding the most efficient DMUs in DEA: An improved integrated model, Computers and Industrial Engineering, 52 (2007), 71-77.
doi: 10.1016/j.cie.2006.10.003. |
[2] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Accounting for slacks to measure and decompose revenue efficiency in the Spanish Designation of Origin wines with DEA, European Journal of Operational Research, 231 (2013), 443-451.
doi: 10.1016/j.ejor.2013.05.047. |
[3] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Measuring and decomposing firm's revenue and cost efficiency: The Russell measures revisited, International Journal of Production Economics, 165 (2015), 19-28.
doi: 10.1016/j.ijpe.2015.03.018. |
[4] |
P. L. Brocket, W. W. Cooper, H. C. Shin and Y. Wang, Inefficiency and congestion in Chinese production before and after the 1978 economic reforms, Socio-Economic Planning Sciences, 32 (1998), 1-20.
doi: 10.1016/S0038-0121(97)00020-7. |
[5] |
W. Cook, Y. Roll and A. Kazakov, A DEA model for measuring the relative efficiencies of highway maintenance patrols, Information Systems and Operational Research, 28 (1990), 113-124. |
[6] |
W. W. Cooper, R. G. Thompson and R. M. Thrall, Intoduction: Extensions and new developments in DEA, Annals of Operations Research, 66 (1996), 3-45.
doi: 10.1007/BF02125451. |
[7] |
W. W. Cooper, L. M. Seiford and J. Zhu, A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA, Socio-Economic Planning Sciences, 34 (2000), 1-25.
doi: 10.1016/S0038-0121(99)00010-5. |
[8] |
W. W. Cooper, B. Gu and S. Li, Comparisons and evaluations of alternative approaches to the treatment of congestion in DEA, European Journal of Operational Research, 132 (2001), 62-74.
doi: 10.1016/S0377-2217(00)00113-2. |
[9] |
G. Debreu, The coefficient of resource utilization, Econometrica, 19 (1951), 273-292. |
[10] |
R. Färe and L. Svensson, Congestion of production factors, Econometrica, 48 (1980), 1745-1753. http://www.jstor.org/stable/1911932?seq=1#page_scan_tab_contents |
[11] |
R. Färe and S. Grosskopf, Measuring congestion in production, Zeitschrift für Nationalökonomie, 43 (1983), 257-271.
doi: 10.1007/BF01283574. |
[12] |
R. Färe, S. Grosskopf and C. A. K. Lovell, The Measurement of Efficiency of Production, Boston: Kluwer Nijhoff, 1985. http://www.springer.com/gp/book/9780898381559#otherversion=9789401577212 |
[13] |
M. J. Farrell, The measurement of productive efficiency, Journal of the Royal Statistical Society, Series A (General), 120 (1957), 253-290.
doi: 10.2307/2343100. |
[14] |
G. R. Jahanshahloo and M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion considering textile industry of China, Applied Mathematics and computation, 151 (2004), 263-273.
doi: 10.1016/S0096-3003(03)00337-0. |
[15] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi and M. Moradi, A DEA approach for fair allocation of common revenue, Applied Mathematics and Computation, 160 (2005), 719-724.
doi: 10.1016/j.amc.2003.11.027. |
[16] |
G. R. Jahanshahloo, A. Memariani, F. Hosseinzadeh Lotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common Set of weights, Applied Mathematics and computation, 166 (2005), 265-281.
doi: 10.1016/j.amc.2004.04.088. |
[17] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information: With an application to European commercial banks, European Journal of Operational Research, 134 (2001), 43-58.
doi: 10.1016/S0377-2217(00)00237-X. |
[18] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information, European Journal of Operational Research, 144 (2003), 454-457.
doi: 10.1016/S0377-2217(01)00398-8. |
[19] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis, Applied Mathematics and computation, 218 (2011), 3680-3688.
doi: 10.1016/j.amc.2011.09.011. |
[20] |
F. F. Liu and H. H. Peng, Ranking of units on the DEA frontier with common weights, Computers and Opreations Research, 35 (2008), 1624-1637.
doi: 10.1016/j.cor.2006.09.006. |
[21] |
A. A. Noura, F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, S. Fanati Rashidi and B. R. Parker, A new method for measuring congestion in data envelopment analysis, Socio-Economic Planning Sciences, 44 (2010), 240-246.
doi: 10.1016/j.seps.2010.06.003. |
[22] |
Y. Roll, W. Cook and B. Golany, Controlling factor weights in data envelopment analysis, IIE Transactions, 23 (1991), 2-9.
doi: 10.1080/07408179108963835. |
[23] |
B. K. Sahoo, M. Mehdiloozad and K. Tone, Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach, European Journal of Operational Research, 237 (2014), 921-931.
doi: 10.1016/j.ejor.2014.02.017. |
[24] |
Z. Sinuany-Stern and L. Friedman, DEA and discriminant analysis of ratios for ranking units, European Journal of Operational Research, 111 (1998), 470-478.
doi: 10.1016/S0377-2217(97)00313-5. |
[25] |
T. Sueyoshi and K. Sekitani, DEA congestion and returns to scale under an occurrence of multiple optimal projections, European Journal of Operational Research, 194 (2009), 592-607.
doi: 10.1016/j.ejor.2007.12.022. |
[26] |
K. Tone and B. K. Sahoo, Degree of scale economies and congestion: A unified DEA approach, European Journal of Operational Research, 158 (2004), 755-772.
doi: 10.1016/S0377-2217(03)00370-9. |
[27] |
Q. L. Wei and H. Yan, Congestion and returns to scale in data envelopment analysis, European Journal of Operational Research, 153 (2004), 641-660.
doi: 10.1016/S0377-2217(02)00799-3. |
[28] |
H. Zare-Haghighi, M. Rostamy-Malkhalifeh and G. R. Jahanshahloo, Measurement of congestion in the simultaneous presence of desirable and undesirable outputs, Journal of Applied Mathematics, 2014 (2014), 1-9.
doi: 10.1155/2014/512157. |
show all references
References:
[1] |
G. R. Amin and M. Toloo, Finding the most efficient DMUs in DEA: An improved integrated model, Computers and Industrial Engineering, 52 (2007), 71-77.
doi: 10.1016/j.cie.2006.10.003. |
[2] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Accounting for slacks to measure and decompose revenue efficiency in the Spanish Designation of Origin wines with DEA, European Journal of Operational Research, 231 (2013), 443-451.
doi: 10.1016/j.ejor.2013.05.047. |
[3] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Measuring and decomposing firm's revenue and cost efficiency: The Russell measures revisited, International Journal of Production Economics, 165 (2015), 19-28.
doi: 10.1016/j.ijpe.2015.03.018. |
[4] |
P. L. Brocket, W. W. Cooper, H. C. Shin and Y. Wang, Inefficiency and congestion in Chinese production before and after the 1978 economic reforms, Socio-Economic Planning Sciences, 32 (1998), 1-20.
doi: 10.1016/S0038-0121(97)00020-7. |
[5] |
W. Cook, Y. Roll and A. Kazakov, A DEA model for measuring the relative efficiencies of highway maintenance patrols, Information Systems and Operational Research, 28 (1990), 113-124. |
[6] |
W. W. Cooper, R. G. Thompson and R. M. Thrall, Intoduction: Extensions and new developments in DEA, Annals of Operations Research, 66 (1996), 3-45.
doi: 10.1007/BF02125451. |
[7] |
W. W. Cooper, L. M. Seiford and J. Zhu, A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA, Socio-Economic Planning Sciences, 34 (2000), 1-25.
doi: 10.1016/S0038-0121(99)00010-5. |
[8] |
W. W. Cooper, B. Gu and S. Li, Comparisons and evaluations of alternative approaches to the treatment of congestion in DEA, European Journal of Operational Research, 132 (2001), 62-74.
doi: 10.1016/S0377-2217(00)00113-2. |
[9] |
G. Debreu, The coefficient of resource utilization, Econometrica, 19 (1951), 273-292. |
[10] |
R. Färe and L. Svensson, Congestion of production factors, Econometrica, 48 (1980), 1745-1753. http://www.jstor.org/stable/1911932?seq=1#page_scan_tab_contents |
[11] |
R. Färe and S. Grosskopf, Measuring congestion in production, Zeitschrift für Nationalökonomie, 43 (1983), 257-271.
doi: 10.1007/BF01283574. |
[12] |
R. Färe, S. Grosskopf and C. A. K. Lovell, The Measurement of Efficiency of Production, Boston: Kluwer Nijhoff, 1985. http://www.springer.com/gp/book/9780898381559#otherversion=9789401577212 |
[13] |
M. J. Farrell, The measurement of productive efficiency, Journal of the Royal Statistical Society, Series A (General), 120 (1957), 253-290.
doi: 10.2307/2343100. |
[14] |
G. R. Jahanshahloo and M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion considering textile industry of China, Applied Mathematics and computation, 151 (2004), 263-273.
doi: 10.1016/S0096-3003(03)00337-0. |
[15] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi and M. Moradi, A DEA approach for fair allocation of common revenue, Applied Mathematics and Computation, 160 (2005), 719-724.
doi: 10.1016/j.amc.2003.11.027. |
[16] |
G. R. Jahanshahloo, A. Memariani, F. Hosseinzadeh Lotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common Set of weights, Applied Mathematics and computation, 166 (2005), 265-281.
doi: 10.1016/j.amc.2004.04.088. |
[17] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information: With an application to European commercial banks, European Journal of Operational Research, 134 (2001), 43-58.
doi: 10.1016/S0377-2217(00)00237-X. |
[18] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information, European Journal of Operational Research, 144 (2003), 454-457.
doi: 10.1016/S0377-2217(01)00398-8. |
[19] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis, Applied Mathematics and computation, 218 (2011), 3680-3688.
doi: 10.1016/j.amc.2011.09.011. |
[20] |
F. F. Liu and H. H. Peng, Ranking of units on the DEA frontier with common weights, Computers and Opreations Research, 35 (2008), 1624-1637.
doi: 10.1016/j.cor.2006.09.006. |
[21] |
A. A. Noura, F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, S. Fanati Rashidi and B. R. Parker, A new method for measuring congestion in data envelopment analysis, Socio-Economic Planning Sciences, 44 (2010), 240-246.
doi: 10.1016/j.seps.2010.06.003. |
[22] |
Y. Roll, W. Cook and B. Golany, Controlling factor weights in data envelopment analysis, IIE Transactions, 23 (1991), 2-9.
doi: 10.1080/07408179108963835. |
[23] |
B. K. Sahoo, M. Mehdiloozad and K. Tone, Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach, European Journal of Operational Research, 237 (2014), 921-931.
doi: 10.1016/j.ejor.2014.02.017. |
[24] |
Z. Sinuany-Stern and L. Friedman, DEA and discriminant analysis of ratios for ranking units, European Journal of Operational Research, 111 (1998), 470-478.
doi: 10.1016/S0377-2217(97)00313-5. |
[25] |
T. Sueyoshi and K. Sekitani, DEA congestion and returns to scale under an occurrence of multiple optimal projections, European Journal of Operational Research, 194 (2009), 592-607.
doi: 10.1016/j.ejor.2007.12.022. |
[26] |
K. Tone and B. K. Sahoo, Degree of scale economies and congestion: A unified DEA approach, European Journal of Operational Research, 158 (2004), 755-772.
doi: 10.1016/S0377-2217(03)00370-9. |
[27] |
Q. L. Wei and H. Yan, Congestion and returns to scale in data envelopment analysis, European Journal of Operational Research, 153 (2004), 641-660.
doi: 10.1016/S0377-2217(02)00799-3. |
[28] |
H. Zare-Haghighi, M. Rostamy-Malkhalifeh and G. R. Jahanshahloo, Measurement of congestion in the simultaneous presence of desirable and undesirable outputs, Journal of Applied Mathematics, 2014 (2014), 1-9.
doi: 10.1155/2014/512157. |
[1] |
Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014 |
[2] |
Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023 |
[3] |
Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531 |
[4] |
Runqin Hao, Guanwen Zhang, Dong Li, Jie Zhang. Data modeling analysis on removal efficiency of hexavalent chromium. Mathematical Foundations of Computing, 2019, 2 (3) : 203-213. doi: 10.3934/mfc.2019014 |
[5] |
Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043 |
[6] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[7] |
Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022027 |
[8] |
Pooja Bansal. Sequential Malmquist-Luenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022058 |
[9] |
Jingmei Zhou, Xiangmo Zhao, Xin Cheng, Zhigang Xu. Visualization analysis of traffic congestion based on floating car data. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1423-1433. doi: 10.3934/dcdss.2015.8.1423 |
[10] |
Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623 |
[11] |
Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022006 |
[12] |
Angela Cadena, Adriana Marcucci, Juan F. Pérez, Hernando Durán, Hernando Mutis, Camilo Taútiva, Fernando Palacios. Efficiency analysis in electricity transmission utilities. Journal of Industrial and Management Optimization, 2009, 5 (2) : 253-274. doi: 10.3934/jimo.2009.5.253 |
[13] |
Cheng-Feng Hu, Hsiao-Fan Wang, Tingyang Liu. Measuring efficiency of a recycling production system with imprecise data. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 79-91. doi: 10.3934/naco.2021052 |
[14] |
Wu Chanti, Qiu Youzhen. A nonlinear empirical analysis on influence factor of circulation efficiency. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 929-940. doi: 10.3934/dcdss.2019062 |
[15] |
Deren Han, Xiaoming Yuan. Existence of anonymous link tolls for decentralizing an oligopolistic game and the efficiency analysis. Journal of Industrial and Management Optimization, 2011, 7 (2) : 347-364. doi: 10.3934/jimo.2011.7.347 |
[16] |
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022 |
[17] |
Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. Performance analysis of buffers with train arrivals and correlated output interruptions. Journal of Industrial and Management Optimization, 2015, 11 (3) : 829-848. doi: 10.3934/jimo.2015.11.829 |
[18] |
Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial and Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083 |
[19] |
Jian Chen, Lei Guan, Xiaoqiang Cai. Analysis on Buyers' cooperative strategy under group-buying price mechanism. Journal of Industrial and Management Optimization, 2013, 9 (2) : 291-304. doi: 10.3934/jimo.2013.9.291 |
[20] |
Zuray Melgarejo, Francisco J. Arcelus, Katrin Simon-Elorz. A three-stage DEA-SFA efficiency analysis of labour-owned and mercantile firms. Journal of Industrial and Management Optimization, 2011, 7 (3) : 573-592. doi: 10.3934/jimo.2011.7.573 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]