\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A subgradient-based convex approximations method for DC programming and its applications

Abstract Related Papers Cited by
  • We consider an optimization problem that minimizes a function of the form $f=f_0+f_1-f_2$ with the constraint $g-h\leq 0$, where $f_0$ is continuous differentiable, $f_1,f_2$ are convex and $g,h$ are lower semicontinuous convex. We propose to solve the problem by an inexact subgradient-based convex approximations method. Under mild assumptions, we show that the method is guaranteed to converge to a stationary point. Finally, some preliminary numerical results are given.
    Mathematics Subject Classification: Primary: 90C26, 49M05; Secondary: 49J53.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. T. H. An, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints, Math. Program., 87 (2000), 401-426.doi: 10.1007/s101070050003.

    [2]

    L. T. H. An, L. H. Minh and P. D. Tao, Optimization based DC programming and DCA for hierarchical clustering, European J. Oper. Res., 183 (2007), 1067-1085.doi: 10.1016/j.ejor.2005.07.028.

    [3]

    L. T. H. An and P. D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Ann. Oper. Res., 133 (2005), 23-46.doi: 10.1007/s10479-004-5022-1.

    [4]

    C. Audet, P. Hansen, B. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.

    [5]

    J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, {Springer, New York}, 2000.doi: 10.1007/978-1-4612-1394-9.

    [6]

    D. H. Fang, C. Li and X. Q. Yang, Asymptotic closure condition and Fenchel duality for DC optimization problems in locally convex spaces, Nonliner Anal., 75 (2012), 3672-3681.doi: 10.1016/j.na.2012.01.023.

    [7]

    M. Fazel, Matrix Rank Minimization with Applications, PhD thesis, Stanford University, 2002.

    [8]

    Y. Gao, Structured Low Rank Matrix Optimization Problems: A Penalty Approach, PhD thesis, National University of Singapore, 2010.

    [9]

    S. He, Z. Luo, J. Nie and S. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization, SIAM J. Optim., 19 (2008), 503-523.doi: 10.1137/070679041.

    [10]

    L. J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach, Oper. Res., 59 (2011), 617-630.doi: 10.1287/opre.1100.0910.

    [11]

    R. Horst and N. V. Thoni, DC programming: Overview, J. Optim. Theory Appl., 103 (1999), 1-43.doi: 10.1023/A:1021765131316.

    [12]

    Z. Luo, W. Ma, A. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Process Mag., 27 (2010), 20-34.doi: 10.1109/MSP.2010.936019.

    [13]

    Z. Luo, N. Sidiropoulos, P. Tseng and S. Zhang, Approximation bounds for quadratic optimization with homogeneous quadratic constraints, SIAM J. Optim., 18 (2007), 1-28.doi: 10.1137/050642691.

    [14]

    B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, Springer, Berlin, 2006.

    [15]

    A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.doi: 10.1137/050622328.

    [16]

    B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), 471-501.doi: 10.1137/070697835.

    [17]

    R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer, New York, 1998.doi: 10.1007/978-3-642-02431-3.

    [18]

    W. Schirotzek, Nonsmooth Analysis, Springer, Berlin, 2007.doi: 10.1007/978-3-540-71333-3.

    [19]

    F. Shan, L. Zhang and X. Xiao, A smoothing function approach to joint chance-constrained programs, J. Optim. Theory Appl., 59 (2014), 181-199.doi: 10.1007/s10957-013-0513-3.

    [20]

    A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, SIAM, Philadelphia, 2009.doi: 10.1137/1.9780898718751.

    [21]

    N. Sidiropoulos, T. Davidson and Z. Luo, Transmit beamforming for physical-layer multicasting, IEEE Trans. Signal Process., 54 (2006), 2239-2251.doi: 10.1109/TSP.2006.872578.

    [22]

    N. V. Thoai, Reverse convex programming approach in the space of extreme criteria for optimization over efficient sets, J. Optim. Theory Appl., 147 (2010), 263-277.doi: 10.1007/s10957-010-9721-2.

    [23]

    X. Xiao, J. Gu, L. Zhang and S. Zhang, A sequential convex program method to DC program with joint chance constraints, J. Ind. Manag. Optim., 8 (2012), 733-747.doi: 10.3934/jimo.2012.8.733.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(3167) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return