-
Previous Article
A priority-based genetic algorithm for a flexible job shop scheduling problem
- JIMO Home
- This Issue
-
Next Article
A subgradient-based convex approximations method for DC programming and its applications
Multi-criteria media mix decision model for advertising a single product with segment specific and mass media
1. | Department of Operational Research, University of Delhi, Delhi-110007, India, India |
2. | School of Business, Public Policy and Social Entrepreneurship, Ambedkar University Delhi, Delhi-110006, India |
3. | School of Engineering and Information Technology, University of New South Wales @ ADFA, Canberra 2600, Australia |
References:
[1] |
D. A. Aaker, A probabilistic approach to industrial media selection,, Lecture Notes in Economics and Mathematical Systems, 132 (1976), 144.
doi: 10.1007/978-3-642-51565-1_48. |
[2] |
S. Aggarwal, K. Govindan, P. C. Jha and I. Meidute, Effect of repeat purchase and dynamic market size on diffusion of an innovative technological consumer product in a segmented market,, Technological and Economic Development of Economy, 20 (2014), 97.
doi: 10.3846/20294913.2014.885914. |
[3] |
B. D. Aouni, C. Calapinto and D. L. Torre, Stochastic goal programming model and satisfaction functions for media selection and planning problem,, International Journal of Multicriteria Decision Making, 2 (2012), 391.
doi: 10.1504/IJMCDM.2012.050678. |
[4] |
P. V. Balakrishnan and N. G. Hall, A maximin procedure for the optimal insertion timing of ad executions,, European Journal of Operational Research, 85 (1995), 368. Google Scholar |
[5] |
F. M. Bass and R. T. Lonsdale, An exploration of linear programming in media selection,, Lecture Notes in Economics and Mathematical Systems, 132 (1976), 137.
doi: 10.1007/978-3-642-51565-1_46. |
[6] |
F. M. Bass, A. Krishnamoorthy, A. Prasad and S. P. Sethi, Advertising competition with market expansion for finite horizon firms,, Journal of Industrial and Management Optimization, 1 (2005), 1.
doi: 10.3934/jimo.2005.1.1. |
[7] |
D. Berkowitz, A. Alaway and G. D. Souza, The impact of differential lag effects on the allocation of advertising budgets across media,, Journal of Advertising Research, 41 (2001), 27. Google Scholar |
[8] |
U. K. Bhattacharya, A chance constraints goal programming model for the advertising planning problem,, European Journal of Operational Research, 192 (2009), 382.
doi: 10.1016/j.ejor.2007.09.039. |
[9] |
A. Buratto, L. Grosset and B. Viscolani, Advertising channel selection in a segmented market,, Automatica, 42 (2006), 1343.
doi: 10.1016/j.automatica.2006.03.015. |
[10] |
A. Buratto, L. Grosset and B. Viscolani, Advertising a new product in a segmented market,, European Journal of Operational Research, 175 (2006), 1262.
doi: 10.1016/j.ejor.2005.06.035. |
[11] |
E. Cetin and S. T. Esen, A weapon-target assignment approach to media allocation,, Applied Mathematics and Computation, 175 (2006), 1266. Google Scholar |
[12] |
A. Charnes, W. W. Cooper, J. K. DeVoe, D. B. Learner and W. Reinecke, A goal programming model for media planning,, Lecture Notes in Economics and Mathematical Systems, 132 (1976), 140.
doi: 10.1007/978-3-642-51565-1_47. |
[13] |
K. Coulter and J. Sarkis, An application of the analytic network process to the advertising media budget allocation decision,, The International Journal on Media Management, 8 (2006), 164.
doi: 10.1207/s14241250ijmm0804_2. |
[14] |
P. J. Danaher and R. T. Rust, Determining the optimal return on investment for an advertising campaign,, European Journal of Operational Research, 95 (1996), 511.
doi: 10.1016/0377-2217(95)00319-3. |
[15] |
C. A. De Kluyver, Hard and soft constraints in media scheduling.,, Journal of Advertisement Research, 18 (1978), 27. Google Scholar |
[16] |
G. E. Fructhter and S. Kalish, Dynamic promotional budgeting and media allocation,, European Journal of Operational Research, 111 (1998), 15. Google Scholar |
[17] |
D. H. Gensch and U. P. Welam, An optimum budget allocation model for dynamic, interacting market segments,, Management Science, 20 (1973), 179.
doi: 10.1287/mnsc.20.2.179. |
[18] |
A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, Journal of Mathematical Analysis and Applications, 22 (1968), 618.
doi: 10.1016/0022-247X(68)90201-1. |
[19] |
L. Grosset and B. Viscolani, Advertising in a segmented market: Comparison of media choices,, IMA Journal of Management Mathematics, 19 (2008), 219.
doi: 10.1093/imaman/dpm040. |
[20] |
L. Grosset and B. Viscolani, Advertising and exogenous interference in a segmented market,, Journal of Interdisciplinary Mathematics, 14 (2011), 29.
doi: 10.1080/09720502.2011.10700733. |
[21] |
M. P. Haydock, Media allocation optimization,, The International Journal of Applied Management and Technology, (2007), 146. Google Scholar |
[22] |
R. H. Huang and C. L. Yang, Optimal planning of advertising scheduling,, Journal of Statistics and Management Systems, 16 (2013), 363.
doi: 10.1080/09720510.2013.842057. |
[23] |
J. P. Ignizio, Goal Programming and Extensions,, Health Lexington Books, (1976). Google Scholar |
[24] |
P. C. Jha, R. Aggarwal and A. Gupta, Optimal media planning for multi-product in segmented market,, Applied Mathematics and Computation, 217 (2011), 6802.
doi: 10.1016/j.amc.2010.12.111. |
[25] |
A. J. Keown and C. P. Duncan, Integer goal programming in advertising media selection,, Decision Sciences, 10 (1979), 577.
doi: 10.1111/j.1540-5915.1979.tb00048.x. |
[26] |
N. K. Kwak, C. W. Lee and J. H. Kim, An MCDM model for media selection in the dual consumer/industrial market,, European Journal of Operational Research, 166 (2005), 255.
doi: 10.1016/j.ejor.2004.02.016. |
[27] |
J. D. C. Little and L. M. Lodish, A media selection model and its optimization by dynamic programming,, Industrial Management Review, 8 (1966), 15. Google Scholar |
[28] |
J. D. Leckenby and K. H. Ju, Advances in media decision models,, Current Issues and research in Advertising, 12 (1990), 311. Google Scholar |
[29] |
W. B. Locander, R. W. Scamell, R. M. Sparkman and J. P. Burton, Media allocation model using nonlinear benefit curves,, Journal of Business Research, 6 (1978), 273. Google Scholar |
[30] |
R. B. Maffei, Planning advertising expenditures by dynamic programming methods,, Management Technology, 1 (1960), 94.
doi: 10.1287/mantech.1.2.94. |
[31] |
E. C. Malthouse, D. Qiu and J. Xu, Optimal selection of media vehicles using customer databases,, Expert Systems with Applications, 39 (2012), 13035.
doi: 10.1016/j.eswa.2012.05.095. |
[32] |
A. Mihiotis and I. Tsakiris, A mathematical programming study of advertising allocation problem,, Applied Mathematics and Computation, 148 (2004), 373.
doi: 10.1016/S0096-3003(02)00853-6. |
[33] |
G. P. Moynihan, A. Kumar, G. D'Souza and W. G. Nockols, A decision support system for media planning, , 29(1),, Computer and Industrial Engineering, 29 (1995), 383. Google Scholar |
[34] |
P. A. Naik, M. K. Mantrala and A. G. Sawyer, Planning media schedules in the presence of dynamic advertising quality,, Marketing Science, 17 (1998), 214.
doi: 10.1287/mksc.17.3.214. |
[35] |
V. S. Ramaswamy and S. Namakumari, Marketing Management: Global Perspective - Indian Context,, $5^{th}$ edition, (2013). Google Scholar |
[36] |
B. C. Royo, H. Zhang, L. A. Blanco and J. Almagro, Multistage multiproduct advertising budgeting,, European Journal of Operational Research, 225 (2013), 179.
doi: 10.1016/j.ejor.2012.09.022. |
[37] |
R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and Application,, John Wiley, (1986).
|
[38] |
H. Thiriez, OR software LINGO,, European Journal of Operational Research, 12 (2000), 655. Google Scholar |
[39] |
B. Viscolani, Advertising decisions for a segmented market,, Optimization, 58 (2009), 469.
doi: 10.1080/02331930701763355. |
[40] |
B. Viscolani, Advertising decisions in a vertical distribution channel,, International Game Theory Review, 11 (2009), 273.
doi: 10.1142/S0219198909002315. |
[41] |
D. Wang and J. Xu, A fuzzy multi-objective decision making model of the advertising budgeting allocation and its application to an IT Company,, Proceedings of the 2008 IEEE ICMIT, (2008), 740.
doi: 10.1109/ICMIT.2008.4654457. |
[42] |
F. S. Zufryden, Media scheduling, a stochastic dynamic model approach,, Management Science, 19 (1973), 1395.
doi: 10.1287/mnsc.19.12.1395. |
[43] |
F. S. Zufryden, Media scheduling and solution approaches,, Operational Research Quarterly, 26 (1975), 283.
|
[44] |
F. S. Zufryden, On the dual optimization of media reach and frequency,, Journal of Business, 48 (1975), 558.
doi: 10.1086/295782. |
[45] |
F. S. Zufryden, Optimal multi-period advertising budget allocation within a competitive environment,, Journal of the Operational Research Society, 26 (1975), 743. Google Scholar |
show all references
References:
[1] |
D. A. Aaker, A probabilistic approach to industrial media selection,, Lecture Notes in Economics and Mathematical Systems, 132 (1976), 144.
doi: 10.1007/978-3-642-51565-1_48. |
[2] |
S. Aggarwal, K. Govindan, P. C. Jha and I. Meidute, Effect of repeat purchase and dynamic market size on diffusion of an innovative technological consumer product in a segmented market,, Technological and Economic Development of Economy, 20 (2014), 97.
doi: 10.3846/20294913.2014.885914. |
[3] |
B. D. Aouni, C. Calapinto and D. L. Torre, Stochastic goal programming model and satisfaction functions for media selection and planning problem,, International Journal of Multicriteria Decision Making, 2 (2012), 391.
doi: 10.1504/IJMCDM.2012.050678. |
[4] |
P. V. Balakrishnan and N. G. Hall, A maximin procedure for the optimal insertion timing of ad executions,, European Journal of Operational Research, 85 (1995), 368. Google Scholar |
[5] |
F. M. Bass and R. T. Lonsdale, An exploration of linear programming in media selection,, Lecture Notes in Economics and Mathematical Systems, 132 (1976), 137.
doi: 10.1007/978-3-642-51565-1_46. |
[6] |
F. M. Bass, A. Krishnamoorthy, A. Prasad and S. P. Sethi, Advertising competition with market expansion for finite horizon firms,, Journal of Industrial and Management Optimization, 1 (2005), 1.
doi: 10.3934/jimo.2005.1.1. |
[7] |
D. Berkowitz, A. Alaway and G. D. Souza, The impact of differential lag effects on the allocation of advertising budgets across media,, Journal of Advertising Research, 41 (2001), 27. Google Scholar |
[8] |
U. K. Bhattacharya, A chance constraints goal programming model for the advertising planning problem,, European Journal of Operational Research, 192 (2009), 382.
doi: 10.1016/j.ejor.2007.09.039. |
[9] |
A. Buratto, L. Grosset and B. Viscolani, Advertising channel selection in a segmented market,, Automatica, 42 (2006), 1343.
doi: 10.1016/j.automatica.2006.03.015. |
[10] |
A. Buratto, L. Grosset and B. Viscolani, Advertising a new product in a segmented market,, European Journal of Operational Research, 175 (2006), 1262.
doi: 10.1016/j.ejor.2005.06.035. |
[11] |
E. Cetin and S. T. Esen, A weapon-target assignment approach to media allocation,, Applied Mathematics and Computation, 175 (2006), 1266. Google Scholar |
[12] |
A. Charnes, W. W. Cooper, J. K. DeVoe, D. B. Learner and W. Reinecke, A goal programming model for media planning,, Lecture Notes in Economics and Mathematical Systems, 132 (1976), 140.
doi: 10.1007/978-3-642-51565-1_47. |
[13] |
K. Coulter and J. Sarkis, An application of the analytic network process to the advertising media budget allocation decision,, The International Journal on Media Management, 8 (2006), 164.
doi: 10.1207/s14241250ijmm0804_2. |
[14] |
P. J. Danaher and R. T. Rust, Determining the optimal return on investment for an advertising campaign,, European Journal of Operational Research, 95 (1996), 511.
doi: 10.1016/0377-2217(95)00319-3. |
[15] |
C. A. De Kluyver, Hard and soft constraints in media scheduling.,, Journal of Advertisement Research, 18 (1978), 27. Google Scholar |
[16] |
G. E. Fructhter and S. Kalish, Dynamic promotional budgeting and media allocation,, European Journal of Operational Research, 111 (1998), 15. Google Scholar |
[17] |
D. H. Gensch and U. P. Welam, An optimum budget allocation model for dynamic, interacting market segments,, Management Science, 20 (1973), 179.
doi: 10.1287/mnsc.20.2.179. |
[18] |
A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, Journal of Mathematical Analysis and Applications, 22 (1968), 618.
doi: 10.1016/0022-247X(68)90201-1. |
[19] |
L. Grosset and B. Viscolani, Advertising in a segmented market: Comparison of media choices,, IMA Journal of Management Mathematics, 19 (2008), 219.
doi: 10.1093/imaman/dpm040. |
[20] |
L. Grosset and B. Viscolani, Advertising and exogenous interference in a segmented market,, Journal of Interdisciplinary Mathematics, 14 (2011), 29.
doi: 10.1080/09720502.2011.10700733. |
[21] |
M. P. Haydock, Media allocation optimization,, The International Journal of Applied Management and Technology, (2007), 146. Google Scholar |
[22] |
R. H. Huang and C. L. Yang, Optimal planning of advertising scheduling,, Journal of Statistics and Management Systems, 16 (2013), 363.
doi: 10.1080/09720510.2013.842057. |
[23] |
J. P. Ignizio, Goal Programming and Extensions,, Health Lexington Books, (1976). Google Scholar |
[24] |
P. C. Jha, R. Aggarwal and A. Gupta, Optimal media planning for multi-product in segmented market,, Applied Mathematics and Computation, 217 (2011), 6802.
doi: 10.1016/j.amc.2010.12.111. |
[25] |
A. J. Keown and C. P. Duncan, Integer goal programming in advertising media selection,, Decision Sciences, 10 (1979), 577.
doi: 10.1111/j.1540-5915.1979.tb00048.x. |
[26] |
N. K. Kwak, C. W. Lee and J. H. Kim, An MCDM model for media selection in the dual consumer/industrial market,, European Journal of Operational Research, 166 (2005), 255.
doi: 10.1016/j.ejor.2004.02.016. |
[27] |
J. D. C. Little and L. M. Lodish, A media selection model and its optimization by dynamic programming,, Industrial Management Review, 8 (1966), 15. Google Scholar |
[28] |
J. D. Leckenby and K. H. Ju, Advances in media decision models,, Current Issues and research in Advertising, 12 (1990), 311. Google Scholar |
[29] |
W. B. Locander, R. W. Scamell, R. M. Sparkman and J. P. Burton, Media allocation model using nonlinear benefit curves,, Journal of Business Research, 6 (1978), 273. Google Scholar |
[30] |
R. B. Maffei, Planning advertising expenditures by dynamic programming methods,, Management Technology, 1 (1960), 94.
doi: 10.1287/mantech.1.2.94. |
[31] |
E. C. Malthouse, D. Qiu and J. Xu, Optimal selection of media vehicles using customer databases,, Expert Systems with Applications, 39 (2012), 13035.
doi: 10.1016/j.eswa.2012.05.095. |
[32] |
A. Mihiotis and I. Tsakiris, A mathematical programming study of advertising allocation problem,, Applied Mathematics and Computation, 148 (2004), 373.
doi: 10.1016/S0096-3003(02)00853-6. |
[33] |
G. P. Moynihan, A. Kumar, G. D'Souza and W. G. Nockols, A decision support system for media planning, , 29(1),, Computer and Industrial Engineering, 29 (1995), 383. Google Scholar |
[34] |
P. A. Naik, M. K. Mantrala and A. G. Sawyer, Planning media schedules in the presence of dynamic advertising quality,, Marketing Science, 17 (1998), 214.
doi: 10.1287/mksc.17.3.214. |
[35] |
V. S. Ramaswamy and S. Namakumari, Marketing Management: Global Perspective - Indian Context,, $5^{th}$ edition, (2013). Google Scholar |
[36] |
B. C. Royo, H. Zhang, L. A. Blanco and J. Almagro, Multistage multiproduct advertising budgeting,, European Journal of Operational Research, 225 (2013), 179.
doi: 10.1016/j.ejor.2012.09.022. |
[37] |
R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and Application,, John Wiley, (1986).
|
[38] |
H. Thiriez, OR software LINGO,, European Journal of Operational Research, 12 (2000), 655. Google Scholar |
[39] |
B. Viscolani, Advertising decisions for a segmented market,, Optimization, 58 (2009), 469.
doi: 10.1080/02331930701763355. |
[40] |
B. Viscolani, Advertising decisions in a vertical distribution channel,, International Game Theory Review, 11 (2009), 273.
doi: 10.1142/S0219198909002315. |
[41] |
D. Wang and J. Xu, A fuzzy multi-objective decision making model of the advertising budgeting allocation and its application to an IT Company,, Proceedings of the 2008 IEEE ICMIT, (2008), 740.
doi: 10.1109/ICMIT.2008.4654457. |
[42] |
F. S. Zufryden, Media scheduling, a stochastic dynamic model approach,, Management Science, 19 (1973), 1395.
doi: 10.1287/mnsc.19.12.1395. |
[43] |
F. S. Zufryden, Media scheduling and solution approaches,, Operational Research Quarterly, 26 (1975), 283.
|
[44] |
F. S. Zufryden, On the dual optimization of media reach and frequency,, Journal of Business, 48 (1975), 558.
doi: 10.1086/295782. |
[45] |
F. S. Zufryden, Optimal multi-period advertising budget allocation within a competitive environment,, Journal of the Operational Research Society, 26 (1975), 743. Google Scholar |
[1] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[2] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[3] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[4] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[5] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[6] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[7] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[8] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[9] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[10] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[11] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[12] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]