\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set

Abstract Related Papers Cited by
  • In this paper, an algorithm of the branch and bound type in outcome space is proposed for solving a global optimization problem that includes, as a special case, generalized multiplicative problems. As an application, we solve the problem of optimizing over the efficient set of a bicriteria concave maximization problem. Preliminary computational experiments show that this algorithm works well for problems where the dimensions of the decision space can be fairly large.
    Mathematics Subject Classification: Primary: 90C29; Secondary: 90C26.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. M. Ashtiani and P. A. V. Ferreira, On the Solution of Generalized Multiplicative Extremum Problems, J. Optim. Theory Appl., 149 (2011), 411-419.doi: 10.1007/s10957-010-9782-2.

    [2]

    H. P. Benson, A Bisection-Extreme Point Search Algorithm for Optimizing over the Efficient Set in the Linear Dependence Case, J. Global Optim., 3 (1993), 95-111.doi: 10.1007/BF01100242.

    [3]

    H. P. Benson and D. Lee, Outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem, J. Optim. Theory Appl., 88 (1996), 77-105.doi: 10.1007/BF02192023.

    [4]

    H. P. Benson, Global maximization of a generalized concave multiplicative function, J. Optim. Theory Appl., 137 (2008), 105-120.doi: 10.1007/s10957-007-9323-9.

    [5]

    J. Fulop and L. D. Muu, Branch-and-bound variant of an outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem, J. Optim. Theory Appl., 105 (2000), 37-54.doi: 10.1023/A:1004657827134.

    [6]

    R. Horst and N. V. Thoai, Utility Function Programs and Optimization over the Efficient Set in Multiple-Objective Decision Making, J. Optim. Theory Appl., 92 (1997), 605-631.doi: 10.1023/A:1022659523991.

    [7]

    H. Isermann and R. E. Steuer, Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set, Eur. J. Oper. Res., 33 (1988), 91-97.doi: 10.1016/0377-2217(88)90257-3.

    [8]

    B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization, J. Global Optim., 10 (1997), 229-256.doi: 10.1023/A:1008203116882.

    [9]

    N. T. B. Kim, L. T. H. An and T. M. Thanh, Outcome-Space Polyblock Approximation Algorithm for Optimizing over Efficient Sets, in Modelling, Computation and Optimization in Information Systems and Management Sciences (eds. L. T. H. An, P. Bouvry and P. D. Tao), Communications in Computer and Information Science, 14 (2008), 234-243.

    [10]

    N. T. B. Kim and L. D. Muu, On the projection of the efficient set and potential applications, Optim. 51 (2002), 401-421.doi: 10.1080/02331930290019486.

    [11]

    N. T. B. Kim and T. N. Thang, Optimization over the Efficient Set of a Bicriteria Convex Programming Problem, Pacific J. Optim., 9 (2013), 103-115.

    [12]

    H. Konno, T. Kuno and Y. Yajima, Global Minimization of a Generalized Convex Multiplicative Function, J. Global Optim, 4 (1994), 47-62.doi: 10.1007/BF01096534.

    [13]

    D. T. Luc, Theory of Vector Optimization, Springer-Verlag, Berlin, Germany, 1989.

    [14]

    L. T. Luc and L. D. Muu, Global optimization approach to optimizing over the efficient set, in Recent Advances in Optimization (eds. P. Gritzmann, R. Horst, E. Sachs and R. Tichatschke), Lecture Notes in Economics and Mathematical Systems, 452 (1997), 183-195.doi: 10.1007/978-3-642-59073-3_13.

    [15]

    D. T. Luc, T. Q. Phong and M. Volle, Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems, SIAM J. Optim., 15 (2005), 987-1001.doi: 10.1137/040603097.

    [16]

    L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set, Optim., 24 (1992), 57-62.doi: 10.1080/02331939208843779.

    [17]

    H. X. Phu, On efficient sets in $\mathbbR^2$, Vietnam J. Math., 33 (2005), 463-468.

    [18]

    T. N. Thang, Outcome-based branch and bound algorithm for optimization over the efficient set and its application, in Some Current Advanced Researches on Information and Computer Science in Vietnam, Advances in Intelligent Systems and Computing, 341 (2015), 31-47.doi: 10.1007/978-3-319-14633-1_3.

    [19]

    N. V. Thoai, Conical algorithm in global optimization for optimizing over efficient sets, J. Global Optim., 18 (2000), 321-336.doi: 10.1023/A:1026544116333.

    [20]

    H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Publishers, 1998.doi: 10.1007/978-1-4757-2809-5.

    [21]

    Y. Yamamoto, Optimization over the efficient set: Overview, J. Global Optim., 22 (2002), 285-317.doi: 10.1023/A:1013875600711.

    [22]

    P. L. Yu, Multiple-Criteria Decision Making, Plenum Press, New York and London, 1985.doi: 10.1007/978-1-4684-8395-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return