October  2016, 12(4): 1495-1505. doi: 10.3934/jimo.2016.12.1495

Differential optimization in finite-dimensional spaces

1. 

School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China

2. 

School of Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China

3. 

Department of Mathematics, Guangxi University for Nationalities, Nanning 530006, China

Received  December 2014 Revised  July 2015 Published  January 2016

In this paper, a class of optimization problems coupled with differential equations in finite dimensional spaces are introduced and studied. An existence theorem of a Carathéodory weak solution of the differential optimization problem is established. Furthermore, when both the mapping and the constraint set in the optimization problem are perturbed by two different parameters, the stability analysis of the differential optimization problem is considered. Finally, an algorithm for solving the differential optimization problem is established.
Citation: Xing Wang, Chang-Qi Tao, Guo-Ji Tang. Differential optimization in finite-dimensional spaces. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1495-1505. doi: 10.3934/jimo.2016.12.1495
References:
[1]

F. Archetti and F. Schen, A survey on the global optimization problem: General theory and computational approaches, Annals of Operations Research, 1 (1984), 87-110. doi: 10.1007/BF01876141.

[2]

W. Behrman, An Efficient Gradient Flow Method for Unconstrained Optimization, PhD thesis, Stanford University, 1998.

[3]

J. F. Bonnans and A. Shapiro, Perturbation Analyisis of Optimization Problems, Springer-Verlag New York Inc., 2000. doi: 10.1007/978-1-4612-1394-9.

[4]

T. D. Chuong, N. Q. Huy and J. C. Yao, Stability of semi-infinite vector optimization problems under functional perturbations, Journal of Global Optimization, 45 (2009), 583-595. doi: 10.1007/s10898-008-9391-x.

[5]

W. R. Esposito and C. A. Floudas, Deterministic global optimization in nonlinear optimal control problems, Journal of Global Optimization, 17 (2000), 97-126. doi: 10.1023/A:1026578104213.

[6]

Z. G. Feng and K. F. C. Yiu, Manifold relaxations for integer programming, Journal of Industrial and Managemnt Optimization, 10 (2014), 557-566. doi: 10.3934/jimo.2014.10.557.

[7]

Y. R. He, Stable pseudomonotone variational inequality in reflexive Banach spaces, Journal of Mathematical Analysis and Applications, 330 (2007), 352-363. doi: 10.1016/j.jmaa.2006.07.063.

[8]

X. Q. Hua and N. Yamashita, An inexact coordinate descent method for the weighted $l_1$-regularized convex optimization problem, Pacific Journal of Optimization, 9 (2013), 567-594.

[9]

N. Q. Huy and J. C. Yao, Semi-infinite optimization under convex function perturbations: Lipschitz stability, Journal of Optimization Theory and Application, 148 (2011), 237-256. doi: 10.1007/s10957-010-9753-7.

[10]

P. Q. Khanh, L. J. Lin and V. S. T. Long, On topological existence theorems and applications to optimization-related problems, Mathematical Method of Operations Research, 79 (2014), 253-272. doi: 10.1007/s00186-014-0462-0.

[11]

G. M. Lee and K. B. Lee, Vector variational inequalities for nondifferentiable convex vector optimization problems, Journal of Global Optimization, 32 (2005), 597-612. doi: 10.1007/s10898-004-2696-5.

[12]

C. Y. Liu, Z. H. Gong and E. M. Feng, Optimal control for a nonlinear time-delay system in fed-batch fermentation, Pacific Journal of Optimization, 9 (2013), 595-612.

[13]

J. Z. Liu, K. F. C. Yiu and K. L. Teo, Optimal investment-consumption problem with constraint, Journal of Industrial and Management Optimization, 9 (2013), 743-768. doi: 10.3934/jimo.2013.9.743.

[14]

J. Z. Liu and K. F. C. Yiu, Optimal stochastic differential games with var constraints, Discrete and Continuous Dynamical Systems, 18 (2013), 1889-1907. doi: 10.3934/dcdsb.2013.18.1889.

[15]

Y. F. Liu, F. L. Wu and K. L. Teo, Conceptual study on applying optimal control theory for generator bidding in power markets, Automation of Electric Power Systems, 29 (2005), 1-6.

[16]

A. Nagurney, J. Pan and L. Zhao, Human migration networks, European Journal of Operational Research, 59 (1992), 262-274. doi: 10.1016/0377-2217(92)90140-5.

[17]

J. S. Pang and D. E. Stewart, Differential variational inequalities, Mathematical Programming Series A, 113 (2008), 345-424. doi: 10.1007/s10107-006-0052-x.

[18]

I. Papamichail and C. S. Adjiman, A rigorous global optimization algorithm for problems with ordinary differential equations, Journal of Global Optimization, 24 (2002), 1-33. doi: 10.1023/A:1016259507911.

[19]

D. Preda and J. Noailles, Mixed integer programming for a special logic constrained optimal control problem, Mathematical Programming, 103 (2005), 309-333. doi: 10.1007/s10107-005-0584-5.

[20]

A. U. Raghunathan, J. R. Pérez-Correa, E. Agosin and L. T. Biegler, Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities, Annals of Operations Research, 148 (2006), 251-270. doi: 10.1007/s10479-006-0086-8.

[21]

S. Sager, H. G. Bock and G. Reinelt, Direct methods with maximal lower bound for mixed-integer optimal control problems, Mathematical Programming, 118 (2009), 109-149. doi: 10.1007/s10107-007-0185-6.

[22]

A. B. Singer and P. I. Barton, Global optimization with nonlinear ordinary differential equations, Journal of Global Optimization, 34 (2006), 159-190. doi: 10.1007/s10898-005-7074-4.

[23]

A. B. Singer and P. I. Barton, Global solution of linear dynamic embedded optimization problems, Journal of Optimization Theory and Applications, 121 (2004), 613-646. doi: 10.1023/B:JOTA.0000037606.79050.a7.

[24]

S. Wang, X. Q. Yang and K. L. Teo, A unified gradient flow approach to constrained nonlinear optimization problems, Computational Optimization and Applications, 25 (2003), 251-268. doi: 10.1023/A:1022973608903.

[25]

L. Yang, Y. P. Chen and X. J. Tong, A note on local sensitivity analysis for parametric optimization problem, Pacific Journal of Optimization, 8 (2012), 185-195.

[26]

K. F. C. Yiu, W. Y. Yan, K. L. Teo and S. Y. Low, A new hybrid descent method with application to the optimal design of finite precision FIR filters, Optimization Methods and Software, 25 (2010), 725-735. doi: 10.1080/10556780903254104.

[27]

J. Zeng, S. J. Li, W. Y. Zhang and X. W. Xue, Stability results for convex vector-valued optimization problems, Positivity, 15 (2011), 441-453. doi: 10.1007/s11117-010-0093-5.

[28]

X. G. Zhou and B. Y. Cao, New global optimality conditions for cubic minimization subject to box or bivalent constraint, Pacific Journal of Optimization, 8 (2012), 631-647.

[29]

L. Zhu and F. Q. Xia, Scalarization method for Levitin-Polyak well-posedness of vectorial optimization problems, Mathematical Method of Operations Research, 76 (2012), 361-375. doi: 10.1007/s00186-012-0410-9.

show all references

References:
[1]

F. Archetti and F. Schen, A survey on the global optimization problem: General theory and computational approaches, Annals of Operations Research, 1 (1984), 87-110. doi: 10.1007/BF01876141.

[2]

W. Behrman, An Efficient Gradient Flow Method for Unconstrained Optimization, PhD thesis, Stanford University, 1998.

[3]

J. F. Bonnans and A. Shapiro, Perturbation Analyisis of Optimization Problems, Springer-Verlag New York Inc., 2000. doi: 10.1007/978-1-4612-1394-9.

[4]

T. D. Chuong, N. Q. Huy and J. C. Yao, Stability of semi-infinite vector optimization problems under functional perturbations, Journal of Global Optimization, 45 (2009), 583-595. doi: 10.1007/s10898-008-9391-x.

[5]

W. R. Esposito and C. A. Floudas, Deterministic global optimization in nonlinear optimal control problems, Journal of Global Optimization, 17 (2000), 97-126. doi: 10.1023/A:1026578104213.

[6]

Z. G. Feng and K. F. C. Yiu, Manifold relaxations for integer programming, Journal of Industrial and Managemnt Optimization, 10 (2014), 557-566. doi: 10.3934/jimo.2014.10.557.

[7]

Y. R. He, Stable pseudomonotone variational inequality in reflexive Banach spaces, Journal of Mathematical Analysis and Applications, 330 (2007), 352-363. doi: 10.1016/j.jmaa.2006.07.063.

[8]

X. Q. Hua and N. Yamashita, An inexact coordinate descent method for the weighted $l_1$-regularized convex optimization problem, Pacific Journal of Optimization, 9 (2013), 567-594.

[9]

N. Q. Huy and J. C. Yao, Semi-infinite optimization under convex function perturbations: Lipschitz stability, Journal of Optimization Theory and Application, 148 (2011), 237-256. doi: 10.1007/s10957-010-9753-7.

[10]

P. Q. Khanh, L. J. Lin and V. S. T. Long, On topological existence theorems and applications to optimization-related problems, Mathematical Method of Operations Research, 79 (2014), 253-272. doi: 10.1007/s00186-014-0462-0.

[11]

G. M. Lee and K. B. Lee, Vector variational inequalities for nondifferentiable convex vector optimization problems, Journal of Global Optimization, 32 (2005), 597-612. doi: 10.1007/s10898-004-2696-5.

[12]

C. Y. Liu, Z. H. Gong and E. M. Feng, Optimal control for a nonlinear time-delay system in fed-batch fermentation, Pacific Journal of Optimization, 9 (2013), 595-612.

[13]

J. Z. Liu, K. F. C. Yiu and K. L. Teo, Optimal investment-consumption problem with constraint, Journal of Industrial and Management Optimization, 9 (2013), 743-768. doi: 10.3934/jimo.2013.9.743.

[14]

J. Z. Liu and K. F. C. Yiu, Optimal stochastic differential games with var constraints, Discrete and Continuous Dynamical Systems, 18 (2013), 1889-1907. doi: 10.3934/dcdsb.2013.18.1889.

[15]

Y. F. Liu, F. L. Wu and K. L. Teo, Conceptual study on applying optimal control theory for generator bidding in power markets, Automation of Electric Power Systems, 29 (2005), 1-6.

[16]

A. Nagurney, J. Pan and L. Zhao, Human migration networks, European Journal of Operational Research, 59 (1992), 262-274. doi: 10.1016/0377-2217(92)90140-5.

[17]

J. S. Pang and D. E. Stewart, Differential variational inequalities, Mathematical Programming Series A, 113 (2008), 345-424. doi: 10.1007/s10107-006-0052-x.

[18]

I. Papamichail and C. S. Adjiman, A rigorous global optimization algorithm for problems with ordinary differential equations, Journal of Global Optimization, 24 (2002), 1-33. doi: 10.1023/A:1016259507911.

[19]

D. Preda and J. Noailles, Mixed integer programming for a special logic constrained optimal control problem, Mathematical Programming, 103 (2005), 309-333. doi: 10.1007/s10107-005-0584-5.

[20]

A. U. Raghunathan, J. R. Pérez-Correa, E. Agosin and L. T. Biegler, Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities, Annals of Operations Research, 148 (2006), 251-270. doi: 10.1007/s10479-006-0086-8.

[21]

S. Sager, H. G. Bock and G. Reinelt, Direct methods with maximal lower bound for mixed-integer optimal control problems, Mathematical Programming, 118 (2009), 109-149. doi: 10.1007/s10107-007-0185-6.

[22]

A. B. Singer and P. I. Barton, Global optimization with nonlinear ordinary differential equations, Journal of Global Optimization, 34 (2006), 159-190. doi: 10.1007/s10898-005-7074-4.

[23]

A. B. Singer and P. I. Barton, Global solution of linear dynamic embedded optimization problems, Journal of Optimization Theory and Applications, 121 (2004), 613-646. doi: 10.1023/B:JOTA.0000037606.79050.a7.

[24]

S. Wang, X. Q. Yang and K. L. Teo, A unified gradient flow approach to constrained nonlinear optimization problems, Computational Optimization and Applications, 25 (2003), 251-268. doi: 10.1023/A:1022973608903.

[25]

L. Yang, Y. P. Chen and X. J. Tong, A note on local sensitivity analysis for parametric optimization problem, Pacific Journal of Optimization, 8 (2012), 185-195.

[26]

K. F. C. Yiu, W. Y. Yan, K. L. Teo and S. Y. Low, A new hybrid descent method with application to the optimal design of finite precision FIR filters, Optimization Methods and Software, 25 (2010), 725-735. doi: 10.1080/10556780903254104.

[27]

J. Zeng, S. J. Li, W. Y. Zhang and X. W. Xue, Stability results for convex vector-valued optimization problems, Positivity, 15 (2011), 441-453. doi: 10.1007/s11117-010-0093-5.

[28]

X. G. Zhou and B. Y. Cao, New global optimality conditions for cubic minimization subject to box or bivalent constraint, Pacific Journal of Optimization, 8 (2012), 631-647.

[29]

L. Zhu and F. Q. Xia, Scalarization method for Levitin-Polyak well-posedness of vectorial optimization problems, Mathematical Method of Operations Research, 76 (2012), 361-375. doi: 10.1007/s00186-012-0410-9.

[1]

Ta Cong Son, Nguyen Tien Dung, Nguyen Van Tan, Tran Manh Cuong, Hoang Thi Phuong Thao, Pham Dinh Tung. Weak convergence of delay SDEs with applications to Carathéodory approximation. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021249

[2]

Iacopo P. Longo, Sylvia Novo, Rafael Obaya. Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5491-5520. doi: 10.3934/dcds.2019224

[3]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[4]

Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193

[5]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

[6]

Yan Tang. Convergence analysis of a new iterative algorithm for solving split variational inclusion problems. Journal of Industrial and Management Optimization, 2020, 16 (2) : 945-964. doi: 10.3934/jimo.2018187

[7]

Guoyong Gu, Junfeng Yang. A unified and tight linear convergence analysis of the relaxed proximal point algorithm. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022107

[8]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[9]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[10]

Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383

[11]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[12]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[13]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[14]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[15]

Ayache Benhadid, Fateh Merahi. Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022003

[16]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[17]

Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1221-1233. doi: 10.3934/jimo.2018201

[18]

Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19

[19]

Jutamas Kerdkaew, Rabian Wangkeeree. Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2651-2673. doi: 10.3934/jimo.2019074

[20]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (183)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]