• Previous Article
    Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays
  • JIMO Home
  • This Issue
  • Next Article
    On linear convergence of projected gradient method for a class of affine rank minimization problems
October  2016, 12(4): 1521-1533. doi: 10.3934/jimo.2016.12.1521

Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion

1. 

Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, Perth, Western Australia 6102, Australia, Australia, Australia, Australia

Received  December 2014 Revised  August 2015 Published  January 2016

This paper studies the portfolio optimization of mean-variance utility with state-dependent risk aversion, where the stock asset is driven by a stochastic process. The sub-game perfect Nash equilibrium strategies and the extended Hamilton-Jacobi-Bellman equations have been used to derive the system of non-linear partial differential equations. From the economic point of view, we demonstrate the numerical evaluation of the suggested solution for a special case where the risk aversion rate is proportional to the wealth value. Our results show that the asset driven by the stochastic volatility process is more general and reasonable than the process with a constant volatility.
Citation: Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521
References:
[1]

I. Bajeux-Besnainou and R. Portait, Dynamic asset allocation in a mean-variance framework,, Management Science, 44 (1998), 79.  doi: 10.1287/mnsc.44.11.S79.  Google Scholar

[2]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation,, Review of Financial Studies, 23 (2010), 2970.   Google Scholar

[3]

T. R. Bielecki, H. Jin, S. R. Pliska and X. Y. Zhou, Continuous-time mean-variance portfolio selection with bankruptcy prohibition,, Mathematical Finance, 15 (2005), 213.  doi: 10.1111/j.0960-1627.2005.00218.x.  Google Scholar

[4]

T. Börk, A. Murgoci and X. Y. Zhou, Mean-variance Portfolio Optimization with State-Dependent Risk Aversion,, Mathematical Finance, 24 (2014), 1.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems,, preprint., ().   Google Scholar

[6]

J. C. Cox, J. E. Innersole and S. A. Ross, A theory of the term structure of interest rates,, Econometrica, 53 (1985), 385.  doi: 10.2307/1911242.  Google Scholar

[7]

M. Dai, Z. Xu and X. Y. Zhou, Continuous-Time Markowitz's model with transaction costs,, SIAM Journal on Financial Mathematics, 1 (2010), 96.  doi: 10.1137/080742889.  Google Scholar

[8]

J. B. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation,, Econometrica, 59 (1991), 1633.  doi: 10.2307/2938283.  Google Scholar

[9]

S. M. Goldman, Consistent plans,, The Review of Economic Studies, 47 (1980), 533.  doi: 10.2307/2297304.  Google Scholar

[10]

P. Krusell and A. A. Smith, Consumption-savings decisions with quasi-geometric discounting,, Econometrica, 71 (2003), 366.  doi: 10.1111/1468-0262.00400.  Google Scholar

[11]

F. E. Kydland and E. C. Prescott, Rules rather than discretion: The inconsistency of optimal plans,, The Journal of Political Economy, 85 (1997), 473.   Google Scholar

[12]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod Mean-variance formulation,, Mathematical Finance, 10 (2000), 387.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

A. E. B. Lim and X. Y. Zhou, Mean-variance portfolio selection with random parameters in a complete market,, Mathematics of Operations Research, 27 (2002), 101.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[14]

A. E. B. Lim, Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market,, Mathematics of Operations Research, 29 (2004), 132.  doi: 10.1287/moor.1030.0065.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, The journal of finance, 7 (1952), 77.   Google Scholar

[16]

R. A. Pollak, Consistent planning,, The Review of Economic Studies, 35 (1968), 201.  doi: 10.2307/2296548.  Google Scholar

[17]

B. Peleg and M. E. Yaar, On the existence of a consistent course of action when tastes are changing,, The Review of Economic Studies, 40 (1973), 391.  doi: 10.2307/2296458.  Google Scholar

[18]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization,, Management Science, 35 (1989), 1045.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[19]

J. Xia, Mean-variance portfolio choice: Quadratic partial hedging,, Mathematical Finance, 15 (2005), 533.  doi: 10.1111/j.1467-9965.2005.00231.x.  Google Scholar

[20]

J. E. Zhang, H. Zhao and E. C. Chang, Equilibrium asset and option pricing under jump diffusion,, Mathematical Finance, 22 (2012), 538.  doi: 10.1111/j.1467-9965.2010.00468.x.  Google Scholar

show all references

References:
[1]

I. Bajeux-Besnainou and R. Portait, Dynamic asset allocation in a mean-variance framework,, Management Science, 44 (1998), 79.  doi: 10.1287/mnsc.44.11.S79.  Google Scholar

[2]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation,, Review of Financial Studies, 23 (2010), 2970.   Google Scholar

[3]

T. R. Bielecki, H. Jin, S. R. Pliska and X. Y. Zhou, Continuous-time mean-variance portfolio selection with bankruptcy prohibition,, Mathematical Finance, 15 (2005), 213.  doi: 10.1111/j.0960-1627.2005.00218.x.  Google Scholar

[4]

T. Börk, A. Murgoci and X. Y. Zhou, Mean-variance Portfolio Optimization with State-Dependent Risk Aversion,, Mathematical Finance, 24 (2014), 1.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems,, preprint., ().   Google Scholar

[6]

J. C. Cox, J. E. Innersole and S. A. Ross, A theory of the term structure of interest rates,, Econometrica, 53 (1985), 385.  doi: 10.2307/1911242.  Google Scholar

[7]

M. Dai, Z. Xu and X. Y. Zhou, Continuous-Time Markowitz's model with transaction costs,, SIAM Journal on Financial Mathematics, 1 (2010), 96.  doi: 10.1137/080742889.  Google Scholar

[8]

J. B. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation,, Econometrica, 59 (1991), 1633.  doi: 10.2307/2938283.  Google Scholar

[9]

S. M. Goldman, Consistent plans,, The Review of Economic Studies, 47 (1980), 533.  doi: 10.2307/2297304.  Google Scholar

[10]

P. Krusell and A. A. Smith, Consumption-savings decisions with quasi-geometric discounting,, Econometrica, 71 (2003), 366.  doi: 10.1111/1468-0262.00400.  Google Scholar

[11]

F. E. Kydland and E. C. Prescott, Rules rather than discretion: The inconsistency of optimal plans,, The Journal of Political Economy, 85 (1997), 473.   Google Scholar

[12]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod Mean-variance formulation,, Mathematical Finance, 10 (2000), 387.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

A. E. B. Lim and X. Y. Zhou, Mean-variance portfolio selection with random parameters in a complete market,, Mathematics of Operations Research, 27 (2002), 101.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[14]

A. E. B. Lim, Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market,, Mathematics of Operations Research, 29 (2004), 132.  doi: 10.1287/moor.1030.0065.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, The journal of finance, 7 (1952), 77.   Google Scholar

[16]

R. A. Pollak, Consistent planning,, The Review of Economic Studies, 35 (1968), 201.  doi: 10.2307/2296548.  Google Scholar

[17]

B. Peleg and M. E. Yaar, On the existence of a consistent course of action when tastes are changing,, The Review of Economic Studies, 40 (1973), 391.  doi: 10.2307/2296458.  Google Scholar

[18]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization,, Management Science, 35 (1989), 1045.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[19]

J. Xia, Mean-variance portfolio choice: Quadratic partial hedging,, Mathematical Finance, 15 (2005), 533.  doi: 10.1111/j.1467-9965.2005.00231.x.  Google Scholar

[20]

J. E. Zhang, H. Zhao and E. C. Chang, Equilibrium asset and option pricing under jump diffusion,, Mathematical Finance, 22 (2012), 538.  doi: 10.1111/j.1467-9965.2010.00468.x.  Google Scholar

[1]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[6]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[7]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[8]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[11]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[12]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[13]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[14]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[15]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[16]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[17]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[18]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[19]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[20]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (2)

[Back to Top]