Citation: |
[1] |
S. Boyd, L. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1994.doi: 10.1137/1.9781611970777.fm. |
[2] |
S. Cao, N. W. Rees and G. Feng, Analysis and design of fuzzy control systems using dynamic fuzzy-state space models, IEEE Transactions on Fuzzy Systems, 7 (1999), 192-200.doi: 10.1109/91.755400. |
[3] |
Y. Y. Cao and P. M. Frank, Robust $H_{\infty}$ disturbance attenuation for a class of uncertain discrete-time fuzzy systems, IEEE Transactions on Fuzzy Systems, 8 (2000), 406-415.doi: 10.1109/91.868947. |
[4] |
Q. Chai, L. Ryan, K. Teo and C. Yang, A unified parameter identification method for nonlinear time-delay systems, Journal of Industrial and Management Optimization, 9 (2013), 471-486.doi: 10.3934/jimo.2013.9.471. |
[5] |
B. S. Chen, C. H. Tseng and H. J. Uang, Mixed $H_{2}/H_{\infty}$ fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach, IEEE Transactions on Fuzzy Systems, 8 (2000), 249-265.doi: 10.1109/91.855915. |
[6] |
M. Darouach, M. Zasadzinski and M. Hayar, Reduced-order observer design for descriptor systems with unknown inputs, IEEE Transactions on Automatic Control, 41 (1996), 1068-1072.doi: 10.1109/9.508918. |
[7] |
D. Essawy, Adaptive control of nonlinear systems using fuzzy systems, Journal of Industrial and Management Optimization, 6 (2010), 861-880.doi: 10.3934/jimo.2010.6.861. |
[8] |
G. Feng, Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions, IEEE Transactions on Fuzzy Systems, 12 (2004), 22-28.doi: 10.1109/TFUZZ.2003.819833. |
[9] |
H. Gao and T. Chen, New results on stability of discrete-time systems with time-varying state delay, IEEE Transactions on Automatic Control, 52 (2007), 328-334.doi: 10.1109/TAC.2006.890320. |
[10] |
H. Gao, J. Lam, C. Wang and Y. Wang, Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay, IEE Proceedings-Control Theory and Applications, 151 (2004), 691-698.doi: 10.1049/ip-cta:20040822. |
[11] |
Z. Gao, X. Shi and S. Ding, Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (2008), 875-880.doi: 10.1109/TSMCB.2008.917185. |
[12] |
T. M. Guerra and L. Vermeiren, LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, Automatica, 40 (2004), 823-829.doi: 10.1016/j.automatica.2003.12.014. |
[13] |
A. Hmamed, Constrained regulation of linear discrete-time systems with time delay: Delay-dependent and delay-independent conditions, International Journal of Systems Science, 31 (2000), 529-536.doi: 10.1080/002077200291109. |
[14] |
Y. Hosoe and T. Hagiwara, Robust stability analysis based on finite impulse response scaling for discrete-time linear time-invariant systems, IET Control Theory and Applications, 7 (2013), 1463-1471.doi: 10.1049/iet-cta.2013.0053. |
[15] |
C. Jiang, K. Teo, R. Loxton and G. Duan, A neighboring extremal solution for an optimal switched impulsive control problem, Journal of Industrial and Management Optimization, 8 (2012), 591-609.doi: 10.3934/jimo.2012.8.591. |
[16] |
M. Johansson, A. Rantzer and K.-E. Årzén, Piecewise quadratic stability of fuzzy systems, IEEE Transactions on Fuzzy Systems, 7 (1999), 713-722.doi: 10.1109/91.811241. |
[17] |
D. Koenig, Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation, IEEE Transactions on Automatic Control, 50 (2005), 212-217.doi: 10.1109/TAC.2004.841889. |
[18] |
A. Kumar and P. Daoutidis, Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes, Chapman & Hall/CRC, 1999.doi: 10.1007/978-94-017-3594-0_4. |
[19] |
F. Li, P. Shi, L. Wu and X. Zhang, Fuzzy-model-based D-stability and non-fragile control for discrete-time descriptor systems with multiple delays, IEEE Transactions on Fuzzy Systems, 22 (2013), 1019-1025.doi: 10.1109/TFUZZ.2013.2272647. |
[20] |
X. Liu and Q. Zhang, New approaches to $H_{\infty}$ controller designs based on fuzzy observers for T-S fuzzy systems via LMI, Automatica, 39 (2003), 1571-1582.doi: 10.1016/S0005-1098(03)00172-9. |
[21] |
S. Ma and Z. Cheng, Observer design for discrete time-delay singular systems with unknown inputs, American Control Conference, 6 (2005), 4215-4219.doi: 10.1109/ACC.2005.1470640. |
[22] |
Y. Ma and G. Yang, Stability analysis for linear discrete-time systems subject to actuator saturation, Control Theory and Technology, 8 (2010), 245-248.doi: 10.1007/s11768-010-7261-9. |
[23] |
S. K. Nguang and P. Shi, $H_{\infty}$ fuzzy output feedback control design for nonlinear systems: An LMI approach, IEEE Transactions on Fuzzy Systems, 11 (2003), 331-340.doi: 10.1109/TFUZZ.2003.812691. |
[24] |
R. Palm and P. Bergsten, Sliding mode observer for a Takagi-Sugeno fuzzy system, The Ninth IEEE International Conference on Fuzzy Systems, 2 (2000), 665-670.doi: 10.1109/FUZZY.2000.839072. |
[25] |
J. Qiu, G. Feng and H. Gao, Static-Output-Feedback control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions, IEEE Transactions on Fuzzy Systems, 21 (2013), 245-261.doi: 10.1109/TFUZZ.2012.2210555. |
[26] |
J. Qiu, G. Feng and H. Gao, Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S fuzzy affine dynamic systems using quantized measurements, IEEE Transactions on Fuzzy Systems, 20 (2012), 1046-1062.doi: 10.1109/TFUZZ.2012.2191790. |
[27] |
J. Qiu, G. Feng and H. Gao, Fuzzy-model-based piecewise $H_{\infty}$ static-output-feedback controller design for networked nonlinear systems, IEEE Transactions on Fuzzy Systems, 18 (2010), 919-934.doi: 10.1109/TFUZZ.2010.2052259. |
[28] |
R. Riaza, Differential-Algebraic Systems: Analytical Aspects And Circuit Applications, World Scientific, 2008.doi: 10.1016/0098-1354(88)85052-X. |
[29] |
H. Shi, G. Xie and W. Luo, Controllability analysis of linear discrete time systems with time delay in state, Abstract and Applied Analysis, (2012), Art. ID 490903, 11 pp. Available form: http://www.hindawi.com/journals/aaa/2012/490903/doi: 10.1155/2012/490903. |
[30] |
T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15 (1985), 116-132. |
[31] |
T. Taniguchi, K. Tanaka, K. Yamafuji and H. Wang, Fuzzy descriptor systems:stability analysis and design via LMIs, American Control Conference, 3 (1999), 1827-1831.doi: 10.1109/ACC.1999.786165. |
[32] |
Y. C. Wang, J. S. Wang and F. H. Tsai, Analysis of discrete-time space priority queue with fuzzy threshold, Journal of Industrial and Management Optimization, 5 (2009), 467-479.doi: 10.3934/jimo.2009.5.467. |
[33] |
Z. Wang, Y. Shen, X. Zhang and Q. Wang, Observer design for discrete-time descriptor systems: An LMI approach, Systems & Control Letters, 61 (2012), 683-687.doi: 10.1016/j.sysconle.2012.03.006. |
[34] |
J. Xiong and J. Lam, Stabilization of linear systems over networks with bounded packet loss, Automatica, 43 (2007), 80-87.doi: 10.1016/j.automatica.2006.07.017. |
[35] |
S. Xu and J. Lam, Robust $H_{\infty}$ control for uncertain discrete-time-delay fuzzy systems via output feedback controllers, IEEE Transactions on Fuzzy Systems, 13 (2005), 82-93.doi: 10.1109/TFUZZ.2004.839661. |
[36] |
Q. Zhang, C. Liu and X. Zhang, Complexity, Analysis and Control of Singular Biological Systems, Springer, London, 2012.doi: 10.1007/978-1-4471-2303-3. |
[37] |
B. Zhu, Q. Zhang and C. Chang, Delay-dependent disspative control for a class of non-linear system via Takagi-Sugeno fuzzy descriptor model with time delay, IET Control Theory and Applications, 8 (2014), 451-461.doi: 10.1049/iet-cta.2013.0438. |