• Previous Article
    Optimal rebate strategies in a two-echelon supply chain with nonlinear and linear multiplicative demands
  • JIMO Home
  • This Issue
  • Next Article
    Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays
October  2016, 12(4): 1557-1585. doi: 10.3934/jimo.2016.12.1557

Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan

1. 

School of Business Information, Shanghai University of International Business and Economics, Shanghai 201620, China

2. 

School of Statistics and Research Centre of International Finance and Risk Management, East China Normal University, Shanghai 200241, China

3. 

School of Statistics, Faculty of Economics and Management, East China Normal University, Shanghai 200241, China

Received  October 2013 Revised  October 2015 Published  January 2016

In this paper, we investigate the consumption-investment problem for a member of the defined contribution pension plan with non-constant time preferences. The aim of the member is to maximize the discounted utility of the consumption. It leads to a time-inconsistent control problem in the sense that the Bellman optimality principle does no longer hold. In our model, the contribution rate is assumed to be a fixed proportion of the scheme member's salary, and the pension fund can be invested in a risk-free asset, an index bond and a stock whose return follows a geometric Brownian motion. Two utility functions are considered: the power utility and the logarithmic utility. We characterize the time-consistent equilibrium consumption-investment strategies and the value function in terms of a solution of an integral equation in both situations. The existence and uniqueness of the solution is verified and the approximation of the solution is obtained. We present some numerical results of the equilibrium consumption rate and equilibrium investment policy with three types of discount functions.
Citation: Qian Zhao, Rongming Wang, Jiaqin Wei. Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1557-1585. doi: 10.3934/jimo.2016.12.1557
References:
[1]

G. Ainslie, Picoeconomics,, Cambridge University Press, (1992).   Google Scholar

[2]

R. Barro, Ramsey meets Laibson in the neoclassical growth model,, Quarterly Journal of Economics, 114 (1999), 1125.  doi: 10.1162/003355399556232.  Google Scholar

[3]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, 2010,, Working Paper, ().   Google Scholar

[4]

T. Björk, A. Murgoci and X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion,, Mathematical Finance, 24 (2014), 1.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

Z. Bodiei, A. Marcus and R. Merton, Defined benefit versus defined contribution pension plans: What are the real trade-offs?,, in Pensions in the US Economy, (1988), 139.   Google Scholar

[6]

A. Cairns, D. Blake and K. Dowd, Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans,, Journal of Economic Dynamics and Control, 30 (2006), 843.  doi: 10.1016/j.jedc.2005.03.009.  Google Scholar

[7]

I. Ekeland and A. Lazrak, Being serious about non-commitment: Subgame perfect equilibrium in continuous time, 2006,, Preprint. University of British Columbia., ().   Google Scholar

[8]

I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management,, SIAM Journal on Financial Mathematics, 3 (2012), 1.  doi: 10.1137/100810034.  Google Scholar

[9]

I. Ekeland and T. Pirvu, Investment and consumption without commitment,, Mathematics and Financial Economics, 2 (2008), 57.  doi: 10.1007/s11579-008-0014-6.  Google Scholar

[10]

P. Emms, Lifetime investment and consumption using a defined-contribution pension scheme,, Journal of Economic Dynamics and Control, 36 (2012), 1303.  doi: 10.1016/j.jedc.2012.01.012.  Google Scholar

[11]

S. Goldman, Consistent plans},, Review of Financial Studies, 47 (1980), 533.  doi: 10.2307/2297304.  Google Scholar

[12]

S. Haberman and E. Vigna, Optimal investment strategies and risk measures in defined contribution pension schemes,, Insurance: Mathematics and Economics, 31 (2002), 35.  doi: 10.1016/S0167-6687(02)00128-2.  Google Scholar

[13]

L. He and Z. Liang, Optimal dynamic asset allocation strategy for ELA scheme of DC pension plan during the distribution phase,, Insurance: Mathematics and Economics, 52 (2013), 404.  doi: 10.1016/j.insmatheco.2013.02.005.  Google Scholar

[14]

D. Laibson, Golden eggs and hyperbolic discounting,, Quarterly Journal of Economics, 112 (1997), 443.  doi: 10.1162/003355397555253.  Google Scholar

[15]

D. Laibson, Life-cycle consumption and hyperbolic discount functions,, European Economic Review, 42 (1998), 861.  doi: 10.1016/S0014-2921(97)00132-3.  Google Scholar

[16]

D. Laibson, A. Repetto and J. Tobacman, Self-control and saving for retirement,, Brookings Papers on Economic Activity, 1998 (1998), 91.  doi: 10.2307/2534671.  Google Scholar

[17]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation,, Quarterly Journal of Economics, 107 (1992), 573.  doi: 10.2307/2118482.  Google Scholar

[18]

J. Marín-Solano and J. Navas, Consumption and portfolio rules for time-inconsistent investors,, European Journal of Operational Research, 201 (2010), 860.  doi: 10.1016/j.ejor.2009.04.005.  Google Scholar

[19]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[20]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[21]

B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Financial Studies, 40 (1973), 391.  doi: 10.2307/2296458.  Google Scholar

[22]

E. Phelps and R. Pollak, On second-best national saving and game-equilibrium growth,, Review of Economic Studies, 35 (1968), 185.   Google Scholar

[23]

R. Pollak, Consistent planning,, Review of Financial Studies, 35 (1968), 201.  doi: 10.2307/2296548.  Google Scholar

[24]

T. Siu, A BSDE approach to risk-based asset allocation of pension funds with regime switching,, Annals of Operations Research, 201 (2012), 449.  doi: 10.1007/s10479-012-1211-5.  Google Scholar

[25]

R. Strotz, Myopia and inconsistency in dynamic utility maximization,, Review of Economic Studies, 23 (1955), 165.  doi: 10.2307/2295722.  Google Scholar

[26]

R. Thaler, Some empirical evidence on dynamic inconsistency,, Economics Letters, 8 (1981), 201.  doi: 10.1016/0165-1765(81)90067-7.  Google Scholar

[27]

A. Zhang, R. Korn and C. Ewald, Optimal management and inflation protection for defined contribution pension plans,, Blätter der DGVFM, 28 (2007), 239.  doi: 10.1007/s11857-007-0019-x.  Google Scholar

[28]

Q. Zhao, Y. Shen and J. Wei, Consumption-investment strategies with non-exponential discounting and logarithmic utility,, European Journal of Operational Research, 238 (2014), 824.  doi: 10.1016/j.ejor.2014.04.034.  Google Scholar

show all references

References:
[1]

G. Ainslie, Picoeconomics,, Cambridge University Press, (1992).   Google Scholar

[2]

R. Barro, Ramsey meets Laibson in the neoclassical growth model,, Quarterly Journal of Economics, 114 (1999), 1125.  doi: 10.1162/003355399556232.  Google Scholar

[3]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, 2010,, Working Paper, ().   Google Scholar

[4]

T. Björk, A. Murgoci and X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion,, Mathematical Finance, 24 (2014), 1.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[5]

Z. Bodiei, A. Marcus and R. Merton, Defined benefit versus defined contribution pension plans: What are the real trade-offs?,, in Pensions in the US Economy, (1988), 139.   Google Scholar

[6]

A. Cairns, D. Blake and K. Dowd, Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans,, Journal of Economic Dynamics and Control, 30 (2006), 843.  doi: 10.1016/j.jedc.2005.03.009.  Google Scholar

[7]

I. Ekeland and A. Lazrak, Being serious about non-commitment: Subgame perfect equilibrium in continuous time, 2006,, Preprint. University of British Columbia., ().   Google Scholar

[8]

I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management,, SIAM Journal on Financial Mathematics, 3 (2012), 1.  doi: 10.1137/100810034.  Google Scholar

[9]

I. Ekeland and T. Pirvu, Investment and consumption without commitment,, Mathematics and Financial Economics, 2 (2008), 57.  doi: 10.1007/s11579-008-0014-6.  Google Scholar

[10]

P. Emms, Lifetime investment and consumption using a defined-contribution pension scheme,, Journal of Economic Dynamics and Control, 36 (2012), 1303.  doi: 10.1016/j.jedc.2012.01.012.  Google Scholar

[11]

S. Goldman, Consistent plans},, Review of Financial Studies, 47 (1980), 533.  doi: 10.2307/2297304.  Google Scholar

[12]

S. Haberman and E. Vigna, Optimal investment strategies and risk measures in defined contribution pension schemes,, Insurance: Mathematics and Economics, 31 (2002), 35.  doi: 10.1016/S0167-6687(02)00128-2.  Google Scholar

[13]

L. He and Z. Liang, Optimal dynamic asset allocation strategy for ELA scheme of DC pension plan during the distribution phase,, Insurance: Mathematics and Economics, 52 (2013), 404.  doi: 10.1016/j.insmatheco.2013.02.005.  Google Scholar

[14]

D. Laibson, Golden eggs and hyperbolic discounting,, Quarterly Journal of Economics, 112 (1997), 443.  doi: 10.1162/003355397555253.  Google Scholar

[15]

D. Laibson, Life-cycle consumption and hyperbolic discount functions,, European Economic Review, 42 (1998), 861.  doi: 10.1016/S0014-2921(97)00132-3.  Google Scholar

[16]

D. Laibson, A. Repetto and J. Tobacman, Self-control and saving for retirement,, Brookings Papers on Economic Activity, 1998 (1998), 91.  doi: 10.2307/2534671.  Google Scholar

[17]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation,, Quarterly Journal of Economics, 107 (1992), 573.  doi: 10.2307/2118482.  Google Scholar

[18]

J. Marín-Solano and J. Navas, Consumption and portfolio rules for time-inconsistent investors,, European Journal of Operational Research, 201 (2010), 860.  doi: 10.1016/j.ejor.2009.04.005.  Google Scholar

[19]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[20]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[21]

B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Financial Studies, 40 (1973), 391.  doi: 10.2307/2296458.  Google Scholar

[22]

E. Phelps and R. Pollak, On second-best national saving and game-equilibrium growth,, Review of Economic Studies, 35 (1968), 185.   Google Scholar

[23]

R. Pollak, Consistent planning,, Review of Financial Studies, 35 (1968), 201.  doi: 10.2307/2296548.  Google Scholar

[24]

T. Siu, A BSDE approach to risk-based asset allocation of pension funds with regime switching,, Annals of Operations Research, 201 (2012), 449.  doi: 10.1007/s10479-012-1211-5.  Google Scholar

[25]

R. Strotz, Myopia and inconsistency in dynamic utility maximization,, Review of Economic Studies, 23 (1955), 165.  doi: 10.2307/2295722.  Google Scholar

[26]

R. Thaler, Some empirical evidence on dynamic inconsistency,, Economics Letters, 8 (1981), 201.  doi: 10.1016/0165-1765(81)90067-7.  Google Scholar

[27]

A. Zhang, R. Korn and C. Ewald, Optimal management and inflation protection for defined contribution pension plans,, Blätter der DGVFM, 28 (2007), 239.  doi: 10.1007/s11857-007-0019-x.  Google Scholar

[28]

Q. Zhao, Y. Shen and J. Wei, Consumption-investment strategies with non-exponential discounting and logarithmic utility,, European Journal of Operational Research, 238 (2014), 824.  doi: 10.1016/j.ejor.2014.04.034.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[4]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[5]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[6]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[7]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[10]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[14]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[15]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[16]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[17]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[18]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[19]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[20]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]