• Previous Article
    Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate
  • JIMO Home
  • This Issue
  • Next Article
    Component allocation cost minimization for a multistate computer network subject to a reliability threshold using tabu search
January  2016, 12(1): 169-186. doi: 10.3934/jimo.2016.12.169

Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method

1. 

Departamento de Ingenieria Mecatronica, Universidad Autonoma del Carmen, Capmeche, Mexico

2. 

Centro de Investigacin y de Estudios Avanzados del I.P.N. (Cinvestav-IPN), Mexico

Received  December 2013 Revised  November 2014 Published  April 2015

This work concerns the robust stabilization of a class of ``Quasi-Lipschitz" nonlinear uncertain systems governed by stochastic Differential Equations (SDE) subject to both multiplicative and additive stochastic noises modeled by a vector Brownian motion. The state-vector is admitted to be non-completely available, and be estimated by a Luenberger-type filter. The stabilization around the origin is realized by a linear feedback proportional to the current state-estimates. First, the class of feedback matrices and filter matrix-gains, providing the boundedness of the stochastic trajectories with probability one in a vicinity of the origin, is specified. Then a corresponding ellipsoid, containing these trajectories, is found. Its ``size" (the trace of the ellipsoid matrix) is derived as a function of the applied gain matrices. To make this ellipsoid ``as small as possible" the corresponding constrained optimization problem is suggested to be solved. These constraints are given by a system of Matrix Inequalities (MI's) which under a specific change of variables may be converted into a conventional system of Bilinear Matrix Inequalities (BMI's). The last may be resolved by the standard MATLAB toolboxes such as ``penbmiTL, Tomlab toolbox". Finally, a numerical example, containing the arctangent-type nonlinearities, is presented to illustrate the effectiveness of the suggested methodology.
Citation: Hussain Alazki, Alexander Poznyak. Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method. Journal of Industrial & Management Optimization, 2016, 12 (1) : 169-186. doi: 10.3934/jimo.2016.12.169
References:
[1]

H. Alazki and A. Poznyak, Inventory constraint control with uncertain stochastic demands: Attractive ellipsoid technique application,, IMA Journal of Mathematical Control and Information, 29 (2012), 399.  doi: 10.1093/imamci/dnr038.  Google Scholar

[2]

J. A. Appleby and A. Flynn, Stabilization of volterra equations by noise,, The Journal of Applied Mathematics and Stochastic Analysis, (2006).  doi: 10.1155/JAMSA/2006/89729.  Google Scholar

[3]

L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems,, The Journal of Differential Equations, 177 (2001), 235.  doi: 10.1006/jdeq.2000.3991.  Google Scholar

[4]

M. Bardi and D. I. Capuzzo, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems and Control: Foundations and Applications, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[5]

D. P. Bertsekas, Infinite time reachability of state-space regions by using feedback control,, IEEE Trans. on Automatic Control, 17 (1994), 604.   Google Scholar

[6]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[7]

F. Blanchini, Set invariance in control - a survey,, Automatica J. IFAC, 35 (1999), 1747.  doi: 10.1016/S0005-1098(99)00113-2.  Google Scholar

[8]

F. Blanchini and S. Miani, Set Theoretic Methods in Control,, Systems & Control: Foundations & Applications. Birkhauser Boston Inc., (2008).   Google Scholar

[9]

A. El Bouhtouri and K. El Hadri, Robust stabilization of jump linear systems with multiplicative noise,, IMA Journal of Mathematical Control and Information, 20 (2003), 1.  doi: 10.1093/imamci/20.1.1.  Google Scholar

[10]

M. Davis, Linear Estimation and Stochastic Control,, Champman and Hall, (1977).   Google Scholar

[11]

T. Duncan and P. Varaiya, On the solution of a stochastic control system,, SIAM J. Control, 9 (1971), 354.  doi: 10.1137/0309026.  Google Scholar

[12]

W. Fleming and R. Rishel, Optimal Deterministic and Stochastic Control,, Springer- Verlag, (1975).   Google Scholar

[13]

U. Haussman, Some examples of optimal control, Or: Stochastic maximum principal at work,, SIAM Rev., 23 (1981), 292.  doi: 10.1137/1023062.  Google Scholar

[14]

K. Holmstrom, A. Goran and M. Edvall, User's Guide for TOMLAB/CPLEX, v12.1,, (2009)., (2009).   Google Scholar

[15]

N. V. Krylov, Controlled Diffusion Process,, Springer, (1980).   Google Scholar

[16]

A. Kurzhanskii and I. Valyi, Ellipsoidal Calculus for Estimation and Control,, Birkhauser, (1997).  doi: 10.1007/978-1-4612-0277-6.  Google Scholar

[17]

H. Kushner, Necessary condition for continuous parameter stochastic optimization problems,, SIAM J. Control, 10 (1972), 550.  doi: 10.1137/0310041.  Google Scholar

[18]

D. G. Luenberger, An introduction to observers,, IEEE Transactions on Automatic Control, 16 (1971), 596.   Google Scholar

[19]

S. A. Nazin, B. T. Polyak and M. V. Tpopunov, Rejection of bounded exogenous disturbances by the method of invariant ellipsoids,, Autom. Remote Control, 68 (2007), 467.  doi: 10.1134/S0005117907030083.  Google Scholar

[20]

Y. Nesterov and A. Nemirovsky, Interior-Point Polynomial Methods in Convex Programming,, SIAM, (1994).   Google Scholar

[21]

B. Polyak, A. V. Nazin, M. V. Topunov and S. A. Nazin, Rejection of bounded disturbances via invariant ellipsoids technique,, In Proc. 45th IEEE Conf. Decision Contr., (2006), 1429.   Google Scholar

[22]

A. Polyakov and A. Poznyak, Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control,, Automatica, 47 (2011), 1450.   Google Scholar

[23]

A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques,, Vol. 1. Elsevier, 1 (2008).   Google Scholar

[24]

A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers: Stochastic Techniques,, Vol. 2. Elsevier, 2 (2009).   Google Scholar

[25]

A. S. Poznyak, T. E. Duncan, B. Pasik-Duncan and V. G. Boltyanskii, Robust stochastic maximum principle for multi-model worst case optimization,, International Journal of Control, 75 (2002), 1032.  doi: 10.1080/00207170210156251.  Google Scholar

[26]

F. Schweppe, Uncertain Dynamic Systems,, Prentice-Hall, (1973).   Google Scholar

[27]

V. A. Ugrinovskii, Robust H infinity control in the presence of stochastic uncertainty,, International Journal of Control, 71 (1998), 219.  doi: 10.1080/002071798221849.  Google Scholar

[28]

J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

show all references

References:
[1]

H. Alazki and A. Poznyak, Inventory constraint control with uncertain stochastic demands: Attractive ellipsoid technique application,, IMA Journal of Mathematical Control and Information, 29 (2012), 399.  doi: 10.1093/imamci/dnr038.  Google Scholar

[2]

J. A. Appleby and A. Flynn, Stabilization of volterra equations by noise,, The Journal of Applied Mathematics and Stochastic Analysis, (2006).  doi: 10.1155/JAMSA/2006/89729.  Google Scholar

[3]

L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems,, The Journal of Differential Equations, 177 (2001), 235.  doi: 10.1006/jdeq.2000.3991.  Google Scholar

[4]

M. Bardi and D. I. Capuzzo, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems and Control: Foundations and Applications, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[5]

D. P. Bertsekas, Infinite time reachability of state-space regions by using feedback control,, IEEE Trans. on Automatic Control, 17 (1994), 604.   Google Scholar

[6]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[7]

F. Blanchini, Set invariance in control - a survey,, Automatica J. IFAC, 35 (1999), 1747.  doi: 10.1016/S0005-1098(99)00113-2.  Google Scholar

[8]

F. Blanchini and S. Miani, Set Theoretic Methods in Control,, Systems & Control: Foundations & Applications. Birkhauser Boston Inc., (2008).   Google Scholar

[9]

A. El Bouhtouri and K. El Hadri, Robust stabilization of jump linear systems with multiplicative noise,, IMA Journal of Mathematical Control and Information, 20 (2003), 1.  doi: 10.1093/imamci/20.1.1.  Google Scholar

[10]

M. Davis, Linear Estimation and Stochastic Control,, Champman and Hall, (1977).   Google Scholar

[11]

T. Duncan and P. Varaiya, On the solution of a stochastic control system,, SIAM J. Control, 9 (1971), 354.  doi: 10.1137/0309026.  Google Scholar

[12]

W. Fleming and R. Rishel, Optimal Deterministic and Stochastic Control,, Springer- Verlag, (1975).   Google Scholar

[13]

U. Haussman, Some examples of optimal control, Or: Stochastic maximum principal at work,, SIAM Rev., 23 (1981), 292.  doi: 10.1137/1023062.  Google Scholar

[14]

K. Holmstrom, A. Goran and M. Edvall, User's Guide for TOMLAB/CPLEX, v12.1,, (2009)., (2009).   Google Scholar

[15]

N. V. Krylov, Controlled Diffusion Process,, Springer, (1980).   Google Scholar

[16]

A. Kurzhanskii and I. Valyi, Ellipsoidal Calculus for Estimation and Control,, Birkhauser, (1997).  doi: 10.1007/978-1-4612-0277-6.  Google Scholar

[17]

H. Kushner, Necessary condition for continuous parameter stochastic optimization problems,, SIAM J. Control, 10 (1972), 550.  doi: 10.1137/0310041.  Google Scholar

[18]

D. G. Luenberger, An introduction to observers,, IEEE Transactions on Automatic Control, 16 (1971), 596.   Google Scholar

[19]

S. A. Nazin, B. T. Polyak and M. V. Tpopunov, Rejection of bounded exogenous disturbances by the method of invariant ellipsoids,, Autom. Remote Control, 68 (2007), 467.  doi: 10.1134/S0005117907030083.  Google Scholar

[20]

Y. Nesterov and A. Nemirovsky, Interior-Point Polynomial Methods in Convex Programming,, SIAM, (1994).   Google Scholar

[21]

B. Polyak, A. V. Nazin, M. V. Topunov and S. A. Nazin, Rejection of bounded disturbances via invariant ellipsoids technique,, In Proc. 45th IEEE Conf. Decision Contr., (2006), 1429.   Google Scholar

[22]

A. Polyakov and A. Poznyak, Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control,, Automatica, 47 (2011), 1450.   Google Scholar

[23]

A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques,, Vol. 1. Elsevier, 1 (2008).   Google Scholar

[24]

A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers: Stochastic Techniques,, Vol. 2. Elsevier, 2 (2009).   Google Scholar

[25]

A. S. Poznyak, T. E. Duncan, B. Pasik-Duncan and V. G. Boltyanskii, Robust stochastic maximum principle for multi-model worst case optimization,, International Journal of Control, 75 (2002), 1032.  doi: 10.1080/00207170210156251.  Google Scholar

[26]

F. Schweppe, Uncertain Dynamic Systems,, Prentice-Hall, (1973).   Google Scholar

[27]

V. A. Ugrinovskii, Robust H infinity control in the presence of stochastic uncertainty,, International Journal of Control, 71 (1998), 219.  doi: 10.1080/002071798221849.  Google Scholar

[28]

J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[1]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[4]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[5]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[6]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[7]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[12]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[17]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[18]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[19]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[20]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]