• Previous Article
    Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims
  • JIMO Home
  • This Issue
  • Next Article
    Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems
January  2016, 12(1): 17-29. doi: 10.3934/jimo.2016.12.17

Global stabilization for ball-and-beam systems via state and partial state feedback

1. 

School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

2. 

Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845

Received  June 2014 Revised  October 2014 Published  April 2015

In this paper, we present new state and partial state feedback laws as global stabilizers of the well-known frictionless ball and beam system. Dealing with nonlinear terms in the manner different from the ones in the literature, we have achieved a new, simple state-dependent saturation control law. The key technique is to assign a suitable state-dependent saturation level function and jointly use the computation techniques of linear gains. Then, combining such a state feedback law with a homogeneous observer, we again obtain a new partial state feedback design.
Citation: Huawen Ye, Honglei Xu. Global stabilization for ball-and-beam systems via state and partial state feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 17-29. doi: 10.3934/jimo.2016.12.17
References:
[1]

D. Angeli and E. D. Sontag, Forward completeness, unboundedness observability, and their Lyapunov characterizations,, Systems and Control Letters, 38 (1999), 209.  doi: 10.1016/S0167-6911(99)00055-9.  Google Scholar

[2]

C. Barbu, R. Sepulchre, P. V. Kokotovic and W. Lin, Global asymptotic stabilization of the ball-and-beam model,, in IEEE Conf. Decision Contr., (1997), 2351.   Google Scholar

[3]

Y. H. Chang, C. W. Chang, C. W. Tao, H. W. Lin and J. S. Taur, Fuzzy sliding-mode controlfor ball and beam system with fuzzy ant colony optimization,, Expert Systems with Applications, 39 (2012), 3624.   Google Scholar

[4]

A. Chen, J. Cao and L. Huang, An estimation of upper bound of delays for global asymptotic stability of delayed Hopfield neural networks,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 49 (2002), 1028.  doi: 10.1109/TCSI.2002.800841.  Google Scholar

[5]

T. L. Chien, C. C. Chen, M. C. Tsai and Y. C. Chen, Control of AMIRA's ball and beam system via improved fuzzy feedback linearization approach,, Applied Mathematical Modelling, 34 (2010), 3791.  doi: 10.1016/j.apm.2010.03.020.  Google Scholar

[6]

J. Hauser, S. Sastry and P. V. Kokotovic, Nonlinear control via approximate input-output linearization: The ball and beam example,, IEEE Transactions on Automatic Control, 37 (1992), 392.  doi: 10.1109/9.119645.  Google Scholar

[7]

Y. Hong, J. Huang and Y. Xu, On an output feedback finite-time stabilization problem,, IEEE Transactions on Automatic Control, 46 (2001), 305.  doi: 10.1109/9.905699.  Google Scholar

[8]

H. K. Khalil, Nonlinear Systems,, Prentice Hall, (2002).   Google Scholar

[9]

X. Li and W. Yu, Synchronization of ball and beam systems with neural compensation,, International Journal of Control, 8 (2010), 491.   Google Scholar

[10]

W. Lin and X. Li, Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent saturation,, Int. J. Control, 72 (1999), 1078.  doi: 10.1080/002071799220434.  Google Scholar

[11]

R. Ortega, M. W. Spong, F. Gomez-Estern and G. Blankenstein, Stabilization of a class of under-actuated mechanical system via interconnection and damping assignment,, IEEE Transactions on Automatic Control, 47 (2002), 1218.  doi: 10.1109/TAC.2002.800770.  Google Scholar

[12]

C. Qian, Global output feedback stabilization of a class of upper-triangular nonlinear systems,, in American Control Conference Hyatt Regency Riverfront, (2009), 3995.   Google Scholar

[13]

S. Sastry, Nonlinear Systems: Analysis, Stability and Control,, Springer, (1999).  doi: 10.1007/978-1-4757-3108-8.  Google Scholar

[14]

R. Sepulchre, Slow peaking and low-gain designs for global stabilization of nonlinear systems,, IEEE Transactions on Automatic Control, 45 (2000), 453.  doi: 10.1109/9.847724.  Google Scholar

[15]

R. Sepulchre, M. Jankovic and P. V. Kokotovic, Constructive Nonlinear Control,, Springer, (1997).  doi: 10.1007/978-1-4471-0967-9.  Google Scholar

[16]

E. D. Sontag, Remarks on stabilization and input-to-state stability,, in IEEE Conf. Decision and Control, (1989), 1376.   Google Scholar

[17]

A. R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls,, Systems and Control Letters, 18 (1992), 165.  doi: 10.1016/0167-6911(92)90001-9.  Google Scholar

[18]

A. R. Teel, Semi-global stabilization of the ball and beam using output feedback,, in American Control Conference, (1993), 2577.   Google Scholar

[19]

H. Ye, H. Wang and H. B. Wang, Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique,, IEEE Transactions on Control Systems Technology, 15 (2007), 1143.   Google Scholar

show all references

References:
[1]

D. Angeli and E. D. Sontag, Forward completeness, unboundedness observability, and their Lyapunov characterizations,, Systems and Control Letters, 38 (1999), 209.  doi: 10.1016/S0167-6911(99)00055-9.  Google Scholar

[2]

C. Barbu, R. Sepulchre, P. V. Kokotovic and W. Lin, Global asymptotic stabilization of the ball-and-beam model,, in IEEE Conf. Decision Contr., (1997), 2351.   Google Scholar

[3]

Y. H. Chang, C. W. Chang, C. W. Tao, H. W. Lin and J. S. Taur, Fuzzy sliding-mode controlfor ball and beam system with fuzzy ant colony optimization,, Expert Systems with Applications, 39 (2012), 3624.   Google Scholar

[4]

A. Chen, J. Cao and L. Huang, An estimation of upper bound of delays for global asymptotic stability of delayed Hopfield neural networks,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 49 (2002), 1028.  doi: 10.1109/TCSI.2002.800841.  Google Scholar

[5]

T. L. Chien, C. C. Chen, M. C. Tsai and Y. C. Chen, Control of AMIRA's ball and beam system via improved fuzzy feedback linearization approach,, Applied Mathematical Modelling, 34 (2010), 3791.  doi: 10.1016/j.apm.2010.03.020.  Google Scholar

[6]

J. Hauser, S. Sastry and P. V. Kokotovic, Nonlinear control via approximate input-output linearization: The ball and beam example,, IEEE Transactions on Automatic Control, 37 (1992), 392.  doi: 10.1109/9.119645.  Google Scholar

[7]

Y. Hong, J. Huang and Y. Xu, On an output feedback finite-time stabilization problem,, IEEE Transactions on Automatic Control, 46 (2001), 305.  doi: 10.1109/9.905699.  Google Scholar

[8]

H. K. Khalil, Nonlinear Systems,, Prentice Hall, (2002).   Google Scholar

[9]

X. Li and W. Yu, Synchronization of ball and beam systems with neural compensation,, International Journal of Control, 8 (2010), 491.   Google Scholar

[10]

W. Lin and X. Li, Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent saturation,, Int. J. Control, 72 (1999), 1078.  doi: 10.1080/002071799220434.  Google Scholar

[11]

R. Ortega, M. W. Spong, F. Gomez-Estern and G. Blankenstein, Stabilization of a class of under-actuated mechanical system via interconnection and damping assignment,, IEEE Transactions on Automatic Control, 47 (2002), 1218.  doi: 10.1109/TAC.2002.800770.  Google Scholar

[12]

C. Qian, Global output feedback stabilization of a class of upper-triangular nonlinear systems,, in American Control Conference Hyatt Regency Riverfront, (2009), 3995.   Google Scholar

[13]

S. Sastry, Nonlinear Systems: Analysis, Stability and Control,, Springer, (1999).  doi: 10.1007/978-1-4757-3108-8.  Google Scholar

[14]

R. Sepulchre, Slow peaking and low-gain designs for global stabilization of nonlinear systems,, IEEE Transactions on Automatic Control, 45 (2000), 453.  doi: 10.1109/9.847724.  Google Scholar

[15]

R. Sepulchre, M. Jankovic and P. V. Kokotovic, Constructive Nonlinear Control,, Springer, (1997).  doi: 10.1007/978-1-4471-0967-9.  Google Scholar

[16]

E. D. Sontag, Remarks on stabilization and input-to-state stability,, in IEEE Conf. Decision and Control, (1989), 1376.   Google Scholar

[17]

A. R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls,, Systems and Control Letters, 18 (1992), 165.  doi: 10.1016/0167-6911(92)90001-9.  Google Scholar

[18]

A. R. Teel, Semi-global stabilization of the ball and beam using output feedback,, in American Control Conference, (1993), 2577.   Google Scholar

[19]

H. Ye, H. Wang and H. B. Wang, Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique,, IEEE Transactions on Control Systems Technology, 15 (2007), 1143.   Google Scholar

[1]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[6]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[9]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[10]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[11]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[12]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[13]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[14]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[15]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[16]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[17]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[18]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[19]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[20]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]