-
Previous Article
Time consistent policy of multi-period mean-variance problem in stochastic markets
- JIMO Home
- This Issue
-
Next Article
Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate
A new approach for allocating fixed costs among decision making units
1. | Department of Computing Science, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China, China, China |
References:
[1] |
A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach, Applied Mathematics and Computation, 171 (2005), 136-151.
doi: 10.1016/j.amc.2005.01.064. |
[2] |
J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis, European Journal of Operational Research, 147 (2003), 198-216.
doi: 10.1016/S0377-2217(02)00244-8. |
[3] |
A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities, Journal of Industrial and management optimization, 5 (2009), 253-274.
doi: 10.3934/jimo.2009.5.253. |
[4] |
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[5] |
W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach, European Journal of Operational Research, 119 (1999), 652-661.
doi: 10.1016/S0377-2217(98)00337-3. |
[6] |
W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach, Computers & Operations Research, 32 (2005), 2171-2178.
doi: 10.1016/j.cor.2004.02.007. |
[7] |
W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis, 2nd edition, Springer, New York, 2007. |
[8] |
F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach, Computers & Industrial Engineering, 64 (2013), 631-640. |
[9] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA, Applied Mathematics and Computation, 153 (2004), 267-274.
doi: 10.1016/S0096-3003(03)00631-3. |
[10] |
M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept, Annals of Operational Research, 214 (2014), 187-194.
doi: 10.1007/s10479-012-1117-2. |
[11] |
Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach, European Journal of Operational Research, 197 (2009), 389-401.
doi: 10.1016/j.ejor.2008.06.017. |
[12] |
Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree, Omega, 41 (2013), 55-60.
doi: 10.1016/j.omega.2011.02.008. |
[13] |
R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis, Applied Mathematics and Computation, 217 (2011), 6349-6358.
doi: 10.1016/j.amc.2011.01.008. |
[14] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis, Applied Mathematics and Computation, 218 (2011), 3680-3688.
doi: 10.1016/j.amc.2011.09.011. |
[15] |
M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis, Journal of Industrial and management optimization, 7 (2011), 531-558. |
[16] |
A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA, European Journal of Operational Research, 209 (2011), 113-121.
doi: 10.1016/j.ejor.2010.08.008. |
[17] |
A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA, Journal of the Operational Research Society, 63 (2012), 406-417. |
[18] |
H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods, Mathematics of Operations Research, 27 (2002), 1-30.
doi: 10.1287/moor.27.1.1.336. |
[19] |
X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost, Applied Mathematics and Computation, 219 (2013), 6580-6590.
doi: 10.1016/j.amc.2012.12.085. |
[20] |
R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions, European Journal of Operational Research, 220 (2012), 729-735.
doi: 10.1016/j.ejor.2012.01.064. |
[21] |
T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties, European Journal of Operational Research, 196 (2009), 764-794.
doi: 10.1016/j.ejor.2008.01.045. |
[22] |
Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing, Journal of Mathematical Economics, 37 (2002), 215-230.
doi: 10.1016/S0304-4068(02)00016-2. |
show all references
References:
[1] |
A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach, Applied Mathematics and Computation, 171 (2005), 136-151.
doi: 10.1016/j.amc.2005.01.064. |
[2] |
J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis, European Journal of Operational Research, 147 (2003), 198-216.
doi: 10.1016/S0377-2217(02)00244-8. |
[3] |
A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities, Journal of Industrial and management optimization, 5 (2009), 253-274.
doi: 10.3934/jimo.2009.5.253. |
[4] |
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[5] |
W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach, European Journal of Operational Research, 119 (1999), 652-661.
doi: 10.1016/S0377-2217(98)00337-3. |
[6] |
W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach, Computers & Operations Research, 32 (2005), 2171-2178.
doi: 10.1016/j.cor.2004.02.007. |
[7] |
W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis, 2nd edition, Springer, New York, 2007. |
[8] |
F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach, Computers & Industrial Engineering, 64 (2013), 631-640. |
[9] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA, Applied Mathematics and Computation, 153 (2004), 267-274.
doi: 10.1016/S0096-3003(03)00631-3. |
[10] |
M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept, Annals of Operational Research, 214 (2014), 187-194.
doi: 10.1007/s10479-012-1117-2. |
[11] |
Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach, European Journal of Operational Research, 197 (2009), 389-401.
doi: 10.1016/j.ejor.2008.06.017. |
[12] |
Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree, Omega, 41 (2013), 55-60.
doi: 10.1016/j.omega.2011.02.008. |
[13] |
R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis, Applied Mathematics and Computation, 217 (2011), 6349-6358.
doi: 10.1016/j.amc.2011.01.008. |
[14] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis, Applied Mathematics and Computation, 218 (2011), 3680-3688.
doi: 10.1016/j.amc.2011.09.011. |
[15] |
M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis, Journal of Industrial and management optimization, 7 (2011), 531-558. |
[16] |
A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA, European Journal of Operational Research, 209 (2011), 113-121.
doi: 10.1016/j.ejor.2010.08.008. |
[17] |
A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA, Journal of the Operational Research Society, 63 (2012), 406-417. |
[18] |
H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods, Mathematics of Operations Research, 27 (2002), 1-30.
doi: 10.1287/moor.27.1.1.336. |
[19] |
X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost, Applied Mathematics and Computation, 219 (2013), 6580-6590.
doi: 10.1016/j.amc.2012.12.085. |
[20] |
R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions, European Journal of Operational Research, 220 (2012), 729-735.
doi: 10.1016/j.ejor.2012.01.064. |
[21] |
T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties, European Journal of Operational Research, 196 (2009), 764-794.
doi: 10.1016/j.ejor.2008.01.045. |
[22] |
Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing, Journal of Mathematical Economics, 37 (2002), 215-230.
doi: 10.1016/S0304-4068(02)00016-2. |
[1] |
Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014 |
[2] |
Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311 |
[3] |
Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023 |
[4] |
Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531 |
[5] |
Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007 |
[6] |
Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 651-664. doi: 10.3934/dcds.2000.6.651 |
[7] |
Runqin Hao, Guanwen Zhang, Dong Li, Jie Zhang. Data modeling analysis on removal efficiency of hexavalent chromium. Mathematical Foundations of Computing, 2019, 2 (3) : 203-213. doi: 10.3934/mfc.2019014 |
[8] |
Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043 |
[9] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[10] |
Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022027 |
[11] |
Pooja Bansal. Sequential Malmquist-Luenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022058 |
[12] |
Narges Torabi Golsefid, Maziar Salahi. Second order cone programming formulation of the fixed cost allocation in DEA based on Nash bargaining game. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021032 |
[13] |
Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2145-2168. doi: 10.3934/dcdsb.2016041 |
[14] |
Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97 |
[15] |
Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019 |
[16] |
Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309 |
[17] |
Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169 |
[18] |
Robert Jarrow, Philip Protter, Jaime San Martin. Asset price bubbles: Invariance theorems. Frontiers of Mathematical Finance, 2022, 1 (2) : 161-188. doi: 10.3934/fmf.2021006 |
[19] |
Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623 |
[20] |
Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022006 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]