-
Previous Article
Time consistent policy of multi-period mean-variance problem in stochastic markets
- JIMO Home
- This Issue
-
Next Article
Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate
A new approach for allocating fixed costs among decision making units
1. | Department of Computing Science, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China, China, China |
References:
[1] |
A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach,, Applied Mathematics and Computation, 171 (2005), 136.
doi: 10.1016/j.amc.2005.01.064. |
[2] |
J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis,, European Journal of Operational Research, 147 (2003), 198.
doi: 10.1016/S0377-2217(02)00244-8. |
[3] |
A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities,, Journal of Industrial and management optimization, 5 (2009), 253.
doi: 10.3934/jimo.2009.5.253. |
[4] |
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.
doi: 10.1016/0377-2217(78)90138-8. |
[5] |
W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach,, European Journal of Operational Research, 119 (1999), 652.
doi: 10.1016/S0377-2217(98)00337-3. |
[6] |
W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach,, Computers & Operations Research, 32 (2005), 2171.
doi: 10.1016/j.cor.2004.02.007. |
[7] |
W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis,, 2nd edition, (2007). Google Scholar |
[8] |
F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach,, Computers & Industrial Engineering, 64 (2013), 631. Google Scholar |
[9] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA,, Applied Mathematics and Computation, 153 (2004), 267.
doi: 10.1016/S0096-3003(03)00631-3. |
[10] |
M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept,, Annals of Operational Research, 214 (2014), 187.
doi: 10.1007/s10479-012-1117-2. |
[11] |
Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach,, European Journal of Operational Research, 197 (2009), 389.
doi: 10.1016/j.ejor.2008.06.017. |
[12] |
Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree,, Omega, 41 (2013), 55.
doi: 10.1016/j.omega.2011.02.008. |
[13] |
R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis,, Applied Mathematics and Computation, 217 (2011), 6349.
doi: 10.1016/j.amc.2011.01.008. |
[14] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and Computation, 218 (2011), 3680.
doi: 10.1016/j.amc.2011.09.011. |
[15] |
M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis,, Journal of Industrial and management optimization, 7 (2011), 531. Google Scholar |
[16] |
A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA,, European Journal of Operational Research, 209 (2011), 113.
doi: 10.1016/j.ejor.2010.08.008. |
[17] |
A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA,, Journal of the Operational Research Society, 63 (2012), 406. Google Scholar |
[18] |
H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods,, Mathematics of Operations Research, 27 (2002), 1.
doi: 10.1287/moor.27.1.1.336. |
[19] |
X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost,, Applied Mathematics and Computation, 219 (2013), 6580.
doi: 10.1016/j.amc.2012.12.085. |
[20] |
R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions,, European Journal of Operational Research, 220 (2012), 729.
doi: 10.1016/j.ejor.2012.01.064. |
[21] |
T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties,, European Journal of Operational Research, 196 (2009), 764.
doi: 10.1016/j.ejor.2008.01.045. |
[22] |
Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing,, Journal of Mathematical Economics, 37 (2002), 215.
doi: 10.1016/S0304-4068(02)00016-2. |
show all references
References:
[1] |
A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach,, Applied Mathematics and Computation, 171 (2005), 136.
doi: 10.1016/j.amc.2005.01.064. |
[2] |
J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis,, European Journal of Operational Research, 147 (2003), 198.
doi: 10.1016/S0377-2217(02)00244-8. |
[3] |
A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities,, Journal of Industrial and management optimization, 5 (2009), 253.
doi: 10.3934/jimo.2009.5.253. |
[4] |
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.
doi: 10.1016/0377-2217(78)90138-8. |
[5] |
W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach,, European Journal of Operational Research, 119 (1999), 652.
doi: 10.1016/S0377-2217(98)00337-3. |
[6] |
W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach,, Computers & Operations Research, 32 (2005), 2171.
doi: 10.1016/j.cor.2004.02.007. |
[7] |
W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis,, 2nd edition, (2007). Google Scholar |
[8] |
F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach,, Computers & Industrial Engineering, 64 (2013), 631. Google Scholar |
[9] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA,, Applied Mathematics and Computation, 153 (2004), 267.
doi: 10.1016/S0096-3003(03)00631-3. |
[10] |
M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept,, Annals of Operational Research, 214 (2014), 187.
doi: 10.1007/s10479-012-1117-2. |
[11] |
Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach,, European Journal of Operational Research, 197 (2009), 389.
doi: 10.1016/j.ejor.2008.06.017. |
[12] |
Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree,, Omega, 41 (2013), 55.
doi: 10.1016/j.omega.2011.02.008. |
[13] |
R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis,, Applied Mathematics and Computation, 217 (2011), 6349.
doi: 10.1016/j.amc.2011.01.008. |
[14] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and Computation, 218 (2011), 3680.
doi: 10.1016/j.amc.2011.09.011. |
[15] |
M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis,, Journal of Industrial and management optimization, 7 (2011), 531. Google Scholar |
[16] |
A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA,, European Journal of Operational Research, 209 (2011), 113.
doi: 10.1016/j.ejor.2010.08.008. |
[17] |
A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA,, Journal of the Operational Research Society, 63 (2012), 406. Google Scholar |
[18] |
H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods,, Mathematics of Operations Research, 27 (2002), 1.
doi: 10.1287/moor.27.1.1.336. |
[19] |
X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost,, Applied Mathematics and Computation, 219 (2013), 6580.
doi: 10.1016/j.amc.2012.12.085. |
[20] |
R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions,, European Journal of Operational Research, 220 (2012), 729.
doi: 10.1016/j.ejor.2012.01.064. |
[21] |
T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties,, European Journal of Operational Research, 196 (2009), 764.
doi: 10.1016/j.ejor.2008.01.045. |
[22] |
Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing,, Journal of Mathematical Economics, 37 (2002), 215.
doi: 10.1016/S0304-4068(02)00016-2. |
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[3] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[4] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[5] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[8] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[9] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[10] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[11] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]