-
Previous Article
Discount-offering and demand-rejection decisions for substitutable products with different profit levels
- JIMO Home
- This Issue
-
Next Article
Global stabilization for ball-and-beam systems via state and partial state feedback
Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims
1. | International Center of Management Science and Engineering, School of Management and Engineering, Nanjing University, Nanjing, 210093, China, China, China |
2. | Department of Mathematics, Zaozhuang University, Zaozhuang, 277160, China |
References:
[1] |
A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.
doi: 10.1080/03461230802700897. |
[2] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).
doi: 10.1017/CBO9780511721434. |
[3] |
Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.
doi: 10.1080/15326340802641006. |
[4] |
D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.
doi: 10.1016/0304-4149(94)90113-9. |
[5] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).
doi: 10.1007/978-3-642-33483-2. |
[6] |
Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.
doi: 10.4134/JKMS.2014.51.4.735. |
[7] |
Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.
doi: 10.1216/RMJ-2014-44-5-1505. |
[8] |
Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.
doi: 10.1016/j.spl.2013.02.018. |
[9] |
Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.
doi: 10.1016/j.jmaa.2014.05.069. |
[10] |
Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.
doi: 10.4134/BKMS.2013.50.2.611. |
[11] |
Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014). Google Scholar |
[12] |
J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.
doi: 10.1007/s10986-009-9032-1. |
[13] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.
doi: 10.1016/j.insmatheco.2006.07.006. |
[14] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.
doi: 10.1002/asmb.747. |
[15] |
J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.
doi: 10.1239/aap/1293113154. |
[16] |
S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.
doi: 10.1023/A:1025148622954. |
[17] |
Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.
doi: 10.1081/STM-200025739. |
[18] |
K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.
doi: 10.1007/s11009-011-9226-y. |
[19] |
Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.
doi: 10.1016/j.jmaa.2012.01.025. |
[20] |
Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.
doi: 10.3934/jimo.2009.5.719. |
[21] |
Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.
doi: 10.1016/j.jmaa.2011.05.013. |
show all references
References:
[1] |
A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.
doi: 10.1080/03461230802700897. |
[2] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).
doi: 10.1017/CBO9780511721434. |
[3] |
Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.
doi: 10.1080/15326340802641006. |
[4] |
D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.
doi: 10.1016/0304-4149(94)90113-9. |
[5] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).
doi: 10.1007/978-3-642-33483-2. |
[6] |
Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.
doi: 10.4134/JKMS.2014.51.4.735. |
[7] |
Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.
doi: 10.1216/RMJ-2014-44-5-1505. |
[8] |
Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.
doi: 10.1016/j.spl.2013.02.018. |
[9] |
Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.
doi: 10.1016/j.jmaa.2014.05.069. |
[10] |
Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.
doi: 10.4134/BKMS.2013.50.2.611. |
[11] |
Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014). Google Scholar |
[12] |
J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.
doi: 10.1007/s10986-009-9032-1. |
[13] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.
doi: 10.1016/j.insmatheco.2006.07.006. |
[14] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.
doi: 10.1002/asmb.747. |
[15] |
J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.
doi: 10.1239/aap/1293113154. |
[16] |
S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.
doi: 10.1023/A:1025148622954. |
[17] |
Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.
doi: 10.1081/STM-200025739. |
[18] |
K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.
doi: 10.1007/s11009-011-9226-y. |
[19] |
Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.
doi: 10.1016/j.jmaa.2012.01.025. |
[20] |
Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.
doi: 10.3934/jimo.2009.5.719. |
[21] |
Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.
doi: 10.1016/j.jmaa.2011.05.013. |
[1] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[2] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[3] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[4] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[5] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[6] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[7] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[8] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[9] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[10] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[11] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[12] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[13] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[14] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[15] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[16] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[17] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[18] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[19] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]