• Previous Article
    Discount-offering and demand-rejection decisions for substitutable products with different profit levels
  • JIMO Home
  • This Issue
  • Next Article
    Global stabilization for ball-and-beam systems via state and partial state feedback
January  2016, 12(1): 31-43. doi: 10.3934/jimo.2016.12.31

Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims

1. 

International Center of Management Science and Engineering, School of Management and Engineering, Nanjing University, Nanjing, 210093, China, China, China

2. 

Department of Mathematics, Zaozhuang University, Zaozhuang, 277160, China

Received  December 2012 Revised  November 2014 Published  April 2015

This paper investigates the asymptotic behavior of the random-time ruin probability in a time-dependent renewal risk model with pairwise quasi-asymptotically independent and subexponential claims, where the time-dependence structure is constructed between a claim size and its inter-arrival time, and described by a conditional tail probability of the claim size given the inter-arrival time before the claim occurs. In particular, the results we obtained are also valid for the finite-time ruin probability.
Citation: Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31
References:
[1]

A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.  doi: 10.1080/03461230802700897.  Google Scholar

[2]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).  doi: 10.1017/CBO9780511721434.  Google Scholar

[3]

Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.  doi: 10.1080/15326340802641006.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).  doi: 10.1007/978-3-642-33483-2.  Google Scholar

[6]

Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.  doi: 10.4134/JKMS.2014.51.4.735.  Google Scholar

[7]

Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.  doi: 10.1216/RMJ-2014-44-5-1505.  Google Scholar

[8]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[9]

Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.  doi: 10.1016/j.jmaa.2014.05.069.  Google Scholar

[10]

Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.  doi: 10.4134/BKMS.2013.50.2.611.  Google Scholar

[11]

Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014).   Google Scholar

[12]

J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.  doi: 10.1007/s10986-009-9032-1.  Google Scholar

[13]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.  doi: 10.1016/j.insmatheco.2006.07.006.  Google Scholar

[14]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.  doi: 10.1002/asmb.747.  Google Scholar

[15]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.  doi: 10.1239/aap/1293113154.  Google Scholar

[16]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.  doi: 10.1023/A:1025148622954.  Google Scholar

[17]

Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.  doi: 10.1081/STM-200025739.  Google Scholar

[18]

K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[19]

Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[20]

Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.  doi: 10.3934/jimo.2009.5.719.  Google Scholar

[21]

Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.  doi: 10.1016/j.jmaa.2011.05.013.  Google Scholar

show all references

References:
[1]

A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.  doi: 10.1080/03461230802700897.  Google Scholar

[2]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).  doi: 10.1017/CBO9780511721434.  Google Scholar

[3]

Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.  doi: 10.1080/15326340802641006.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).  doi: 10.1007/978-3-642-33483-2.  Google Scholar

[6]

Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.  doi: 10.4134/JKMS.2014.51.4.735.  Google Scholar

[7]

Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.  doi: 10.1216/RMJ-2014-44-5-1505.  Google Scholar

[8]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[9]

Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.  doi: 10.1016/j.jmaa.2014.05.069.  Google Scholar

[10]

Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.  doi: 10.4134/BKMS.2013.50.2.611.  Google Scholar

[11]

Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014).   Google Scholar

[12]

J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.  doi: 10.1007/s10986-009-9032-1.  Google Scholar

[13]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.  doi: 10.1016/j.insmatheco.2006.07.006.  Google Scholar

[14]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.  doi: 10.1002/asmb.747.  Google Scholar

[15]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.  doi: 10.1239/aap/1293113154.  Google Scholar

[16]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.  doi: 10.1023/A:1025148622954.  Google Scholar

[17]

Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.  doi: 10.1081/STM-200025739.  Google Scholar

[18]

K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[19]

Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[20]

Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.  doi: 10.3934/jimo.2009.5.719.  Google Scholar

[21]

Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.  doi: 10.1016/j.jmaa.2011.05.013.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[3]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[4]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[5]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[6]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[7]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[8]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[11]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[14]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[15]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[18]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[19]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (1)

[Back to Top]