• Previous Article
    A criterion for an approximation global optimal solution based on the filled functions
  • JIMO Home
  • This Issue
  • Next Article
    A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain
January  2016, 12(1): 357-373. doi: 10.3934/jimo.2016.12.357

Fuzzy quadratic surface support vector machine based on fisher discriminant analysis

1. 

School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China

2. 

Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695-7906

3. 

Department of Mathematics, Shanghai University, Shanghai 200444

4. 

School of Management, University of Chinese Academy of Sciences, Beijing, 100190

Received  August 2014 Revised  January 2015 Published  April 2015

In this paper, using the concept of Fisher discriminant analysis and a new fuzzy membership function, a kernel-free fuzzy quadratic surface support vector machine model is proposed for binary classification. The membership function is specially designed to consider not only the ``quadratic-margin distance'' between a training point and its related ``quadratic center surface'' but also the affinity among training points. A decomposition algorithm is designed to solve the proposed model. Computational results on artificial and four real-world classifying data sets indicate that the proposed model outperforms fuzzy support vector machine models with Gaussian or Quadratic kernel and soft quadratic surface support vector machine model, especially, when the data sets contain a large amount of outliers and noises.
Citation: Jian Luo, Shu-Cherng Fang, Yanqin Bai, Zhibin Deng. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. Journal of Industrial & Management Optimization, 2016, 12 (1) : 357-373. doi: 10.3934/jimo.2016.12.357
References:
[1]

L. T. H. An and P. D. Tao, A continuous approach for the concave cost supply problem via DC programming and DCA,, Discrete Applied Mathematics, 156 (2008), 325.  doi: 10.1016/j.dam.2007.03.024.  Google Scholar

[2]

W. An and M. Liang, Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises,, Neurocomputing, 110 (2013), 101.  doi: 10.1016/j.neucom.2012.11.023.  Google Scholar

[3]

K. Bache and M. Lichman, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science,, 2013. Available from: , ().   Google Scholar

[4]

M. Bicego and M. A. Figueiredo, Soft clustering using weighted one-class support vector machines,, Pattern Recognition, 42 (2009), 27.  doi: 10.1016/j.patcog.2008.07.004.  Google Scholar

[5]

J. P. Brooks, Support vector machines with the ramp loss and the hard margin loss,, Operations Research, 59 (2011), 467.  doi: 10.1287/opre.1100.0854.  Google Scholar

[6]

H.-G. Chew and C.-C. Lim, On regularisation parameter transformation of support vector machines,, Journal of Industrial and Management Optimization, 5 (2009), 403.  doi: 10.3934/jimo.2009.5.403.  Google Scholar

[7]

I. Dagher, Quadratic kernel-free non-linear support vector machine,, Journal of Global Optimization, 41 (2008), 15.  doi: 10.1007/s10898-007-9162-0.  Google Scholar

[8]

R. A. Fisher, The use of multiple measurements in taxonomic problems,, Annals of Human Genetics, 7 (1936), 179.  doi: 10.1111/j.1469-1809.1936.tb02137.x.  Google Scholar

[9]

X. Jiang, Y. Zhang and J. C. Lv, Fuzzy SVM with a new fuzzy membership function,, Neural Computing and Applications, 15 (2006), 268.  doi: 10.1007/s00521-006-0028-z.  Google Scholar

[10]

T. Joachims, Text categorization with support vector machines: learning with many relevant features,, Machine Learning: ECML-98, 1398 (1998), 137.  doi: 10.1007/BFb0026683.  Google Scholar

[11]

S. B. Kazmi, Q. Ain and M. A. Jaffar, Wavelets-based facial expression recognition using a bank of support vector machines,, Soft Computing, 16 (2012), 369.  doi: 10.1007/s00500-011-0721-4.  Google Scholar

[12]

C. F. Lin and S. D. Wang, Fuzzy support vector machines,, IEEE Transactions on Neural Networks, 13 (2002), 464.   Google Scholar

[13]

Y. Liu and M. Yuan, Reinforced multicategory support vector machines,, Journal of Computational and Graphical Statistics, 20 (2011), 901.  doi: 10.1198/jcgs.2010.09206.  Google Scholar

[14]

J. Luo, Z. Deng, D. Bulatov, J. E. Lavery and S.-C. Fang, Comparison of an $l_1$-regression-based and a RANSAC-based planar segmentation procedure for urban terrain data with many outliers,, Image and Signal Processing for Remote Sensing XIX, 8892 (2013).  doi: 10.1117/12.2028627.  Google Scholar

[15]

J. Luo, S.-C. Fang, Z. Deng and X. Guo, Quadratic Surface Support Vector Machine for Binary Classification,, Submitted to Neurocomputing, (2014).   Google Scholar

[16]

K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.  doi: 10.3934/jimo.2005.1.465.  Google Scholar

[17]

F. E. H. Tay and L. Cao, Application of support vector machines in financial time series forecasting,, Omega, 29 (2001), 309.  doi: 10.1016/S0305-0483(01)00026-3.  Google Scholar

[18]

V. N. Vapnik, The Nature of Statistical Learning Theory,, $2^{nd}$ edition, (2000).  doi: 10.1007/978-1-4757-3264-1.  Google Scholar

[19]

C. Wu, C. Li and Q. Long, A DC programming approach for sensor network localization with uncertainties in archor positions,, Journal of Industrial and Management Optimization, 10 (2014), 817.  doi: 10.3934/jimo.2014.10.817.  Google Scholar

[20]

Y. Wu and Y. Liu, Robust truncated hinge loss support vector machines,, Journal of the American Statistical Association, 102 (2007), 974.  doi: 10.1198/016214507000000617.  Google Scholar

[21]

X. Zhang, X. Xiao and G. Xu, Fuzzy support vector machine based on affinity among samples,, Journal of Software, 17 (2006), 951.  doi: 10.1360/jos170951.  Google Scholar

[22]

G. Zhang, S. Wang, Y. Wang and W. Liu, LS-SVM approximate solution for affine nonlinear systems with partially unknown systems,, Journal of Industrial and Management Optimization, 10 (2014), 621.  doi: 10.3934/jimo.2014.10.621.  Google Scholar

show all references

References:
[1]

L. T. H. An and P. D. Tao, A continuous approach for the concave cost supply problem via DC programming and DCA,, Discrete Applied Mathematics, 156 (2008), 325.  doi: 10.1016/j.dam.2007.03.024.  Google Scholar

[2]

W. An and M. Liang, Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises,, Neurocomputing, 110 (2013), 101.  doi: 10.1016/j.neucom.2012.11.023.  Google Scholar

[3]

K. Bache and M. Lichman, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science,, 2013. Available from: , ().   Google Scholar

[4]

M. Bicego and M. A. Figueiredo, Soft clustering using weighted one-class support vector machines,, Pattern Recognition, 42 (2009), 27.  doi: 10.1016/j.patcog.2008.07.004.  Google Scholar

[5]

J. P. Brooks, Support vector machines with the ramp loss and the hard margin loss,, Operations Research, 59 (2011), 467.  doi: 10.1287/opre.1100.0854.  Google Scholar

[6]

H.-G. Chew and C.-C. Lim, On regularisation parameter transformation of support vector machines,, Journal of Industrial and Management Optimization, 5 (2009), 403.  doi: 10.3934/jimo.2009.5.403.  Google Scholar

[7]

I. Dagher, Quadratic kernel-free non-linear support vector machine,, Journal of Global Optimization, 41 (2008), 15.  doi: 10.1007/s10898-007-9162-0.  Google Scholar

[8]

R. A. Fisher, The use of multiple measurements in taxonomic problems,, Annals of Human Genetics, 7 (1936), 179.  doi: 10.1111/j.1469-1809.1936.tb02137.x.  Google Scholar

[9]

X. Jiang, Y. Zhang and J. C. Lv, Fuzzy SVM with a new fuzzy membership function,, Neural Computing and Applications, 15 (2006), 268.  doi: 10.1007/s00521-006-0028-z.  Google Scholar

[10]

T. Joachims, Text categorization with support vector machines: learning with many relevant features,, Machine Learning: ECML-98, 1398 (1998), 137.  doi: 10.1007/BFb0026683.  Google Scholar

[11]

S. B. Kazmi, Q. Ain and M. A. Jaffar, Wavelets-based facial expression recognition using a bank of support vector machines,, Soft Computing, 16 (2012), 369.  doi: 10.1007/s00500-011-0721-4.  Google Scholar

[12]

C. F. Lin and S. D. Wang, Fuzzy support vector machines,, IEEE Transactions on Neural Networks, 13 (2002), 464.   Google Scholar

[13]

Y. Liu and M. Yuan, Reinforced multicategory support vector machines,, Journal of Computational and Graphical Statistics, 20 (2011), 901.  doi: 10.1198/jcgs.2010.09206.  Google Scholar

[14]

J. Luo, Z. Deng, D. Bulatov, J. E. Lavery and S.-C. Fang, Comparison of an $l_1$-regression-based and a RANSAC-based planar segmentation procedure for urban terrain data with many outliers,, Image and Signal Processing for Remote Sensing XIX, 8892 (2013).  doi: 10.1117/12.2028627.  Google Scholar

[15]

J. Luo, S.-C. Fang, Z. Deng and X. Guo, Quadratic Surface Support Vector Machine for Binary Classification,, Submitted to Neurocomputing, (2014).   Google Scholar

[16]

K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.  doi: 10.3934/jimo.2005.1.465.  Google Scholar

[17]

F. E. H. Tay and L. Cao, Application of support vector machines in financial time series forecasting,, Omega, 29 (2001), 309.  doi: 10.1016/S0305-0483(01)00026-3.  Google Scholar

[18]

V. N. Vapnik, The Nature of Statistical Learning Theory,, $2^{nd}$ edition, (2000).  doi: 10.1007/978-1-4757-3264-1.  Google Scholar

[19]

C. Wu, C. Li and Q. Long, A DC programming approach for sensor network localization with uncertainties in archor positions,, Journal of Industrial and Management Optimization, 10 (2014), 817.  doi: 10.3934/jimo.2014.10.817.  Google Scholar

[20]

Y. Wu and Y. Liu, Robust truncated hinge loss support vector machines,, Journal of the American Statistical Association, 102 (2007), 974.  doi: 10.1198/016214507000000617.  Google Scholar

[21]

X. Zhang, X. Xiao and G. Xu, Fuzzy support vector machine based on affinity among samples,, Journal of Software, 17 (2006), 951.  doi: 10.1360/jos170951.  Google Scholar

[22]

G. Zhang, S. Wang, Y. Wang and W. Liu, LS-SVM approximate solution for affine nonlinear systems with partially unknown systems,, Journal of Industrial and Management Optimization, 10 (2014), 621.  doi: 10.3934/jimo.2014.10.621.  Google Scholar

[1]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[2]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[3]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[4]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[5]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[6]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[7]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[8]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[9]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[10]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[11]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[12]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[13]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[14]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[15]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[16]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[17]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (121)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]