\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A criterion for an approximation global optimal solution based on the filled functions

Abstract Related Papers Cited by
  • In this paper, a new definition of the filled function is given. Based on the new definition, a new class of filled functions is constructed, and the properties of the new filled functions are analysed and discussed. Moreover, according to the new class of filled functions, a criterion is given to decide whether the point we have obtained is an approximate global optimal solution. Finally, a global optimization algorithm based on the new class of filled functions is presented. The implementation of the algorithm on several test problems is reported with numerical results.
    Mathematics Subject Classification: Primary: 90C30; Secondary: 90C33.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. H. Chew and Q. Zheng, Integral Global Optimization, Volume 298 of Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, 1988.doi: 10.1007/978-3-642-46623-6.

    [2]

    L. C. W. Dixon, J. Gomulka and S. E. Herson, Reflection on global optimization problems, in Optimization in Action (Dixon, L.C.W. etc.), Academic Press, New York, (1976), 398-435.

    [3]

    R. P. Ge, A filled function method for finding a global minimizer of a function of several variables, Mathematical Programming, 46 (1990), 191-204.doi: 10.1007/BF01585737.

    [4]

    R. P. Ge and Y. F. Qin, A class of filled functions for finding a global minimizer of a function of several variables, Journal of Optimization Theory and Applications, 54 (1987), 241-252.doi: 10.1007/BF00939433.

    [5]

    R. P. Ge and Y. F. Qin, The globally convexized filled functions for global optimization, Applied Mathematics and Computation, 35 (1990), 131-158.doi: 10.1016/0096-3003(90)90114-I.

    [6]

    R. Horst, P. M. Pardalos and N. V. Thoai, Introduction to Global Optimization, $2^{nd}$ edition, Kluwer Academic Publishers, Dordrecht, 2001.

    [7]

    R. Horst, N. V. Thoai and H. Tuy, Outer approximation by polyhedral convex sets, Operations Research Spektrum, 9 (1987), 153-159.doi: 10.1007/BF01721096.

    [8]

    A. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions, SIAM Journal on Scientific and Statistical Computing, 6 (1986), 15-29.doi: 10.1137/0906002.

    [9]

    X. Liu, Finding global minima with a computable filled function, Journal of Global Optimization, 19 (2001), 151-161.doi: 10.1023/A:1008330632677.

    [10]

    H. W. Lin, Y. P. Wang, L. Fan and Y. L. Gao, A new discrete filled function method for finding global minimizer of the integer programming, Applied Mathematics and Computation, 219 (2013), 4371-4378.doi: 10.1016/j.amc.2012.10.035.

    [11]

    H. W. Lin, Y. L. Gao and Y. P. Wang, A continuously differentiable filled function method for global optimization, Numerical Algorithms, 66 (2014), 511-523.doi: 10.1007/s11075-013-9746-3.

    [12]

    R. E. Moore, Enterbal Analysis, Prentice-Hall, NJ: Englewood Cliffs, 1966.

    [13]

    P. M. Pardalos, H. E. Romeijn and H. Tuy, Recent development and trends in global optimization, Journal of Computational and Applied Mathematics, 124 (2000), 209-228.doi: 10.1016/S0377-0427(00)00425-8.

    [14]

    Z. Wan, L. Y. Yuan and J. W. Chen, A filled function method for nonlinear systems of equalities and inequalities, Computational & Applied Mathematics, 31 (2012), 391-405.doi: 10.1590/S1807-03022012000200010.

    [15]

    W. X. Wang, Y. L. Shang, L. S. Zhang and Y. Zhang, Global minimization of non-smooth unconstrained problems with filled function, Optimization Letters, 7 (2013), 435-446.doi: 10.1007/s11590-011-0427-7.

    [16]

    F. Wei and Y. P. Wang, A new filled function method with one parameter for global optimization, Mathematical Problems in Engineering, 2013 (2013), 12 pages.

    [17]

    F. Wei, Y. P. Wang and H. W. Lin, (2014), A new filled function method with two parameters for global optimization, Journal of Optimization Theory and Applications, 163 (2014), 510-527.doi: 10.1007/s10957-013-0515-1.

    [18]

    Y. J. Yang and Y. L. Shang, A new filled function method for unconstrained global optimization, Applied Mathematicas Computation, 173 (2006), 501-512.doi: 10.1016/j.amc.2005.04.046.

    [19]

    Y. J. Yang, Z. Y. Wu and F. S. Bai, A filled function method for constrained nonlinear integer programming, Journal of Industrial and Management Optimization, 4 (2008), 353-362.doi: 10.3934/jimo.2008.4.353.

    [20]

    L. Y. Yuan, Z. Wan, J. J. Zhang and B. Sun, A filled function method for solving nonlinear complementarity problems, Journal of Industrial and Management Optimization, 5 (2009), 911-928.doi: 10.3934/jimo.2009.5.911.

    [21]

    L. S. Zhang, C. NG, D. Li and W. Tian, A new filled function method for global optimization, Journal of Global Optimization, 28 (2004), 17-43.doi: 10.1023/B:JOGO.0000006653.60256.f6.

    [22]

    Q. Zheng and D. Zhuang, Integral global minimization: Algorithms, implementations and numerical tests, Journal of Global Optimization, 7 (1995), 421-454.doi: 10.1007/BF01099651.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return